Some studies on $\Pi$-coherent rings
HTML articles powered by AMS MathViewer
- by Ming Yi Wang
- Proc. Amer. Math. Soc. 119 (1993), 71-76
- DOI: https://doi.org/10.1090/S0002-9939-1993-1150657-1
- PDF | Request permission
Abstract:
An internal description and a classification of $\Pi$-coherent rings are obtained by using $W$-ideals and FGT-projective dimension, respectively, as defined in this paper.References
- Victor Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), no. 1, 72–76. MR 1060832, DOI 10.1016/0021-8693(90)90252-J M. F. Jones, Flatness and $f$-projective of torsion-free modules and injective modules, Lecture Notes in Math., vol. 951, Springer-Verlag, Berlin and New York, Wang Mingyi, The dual modules over $GN$-rings, J. Guangxi Normal Univ. 2 (1990), 11-15.
- C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93 (1985), no. 2, 253–266. MR 786753, DOI 10.1016/0021-8693(85)90159-0
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953, DOI 10.1007/978-3-642-66066-5 Xu Yansong, Coherent rings and $IF$-rings are characterized by $FP$-injective modules, J. Math. Res. Exposition 1 (1986), 5-10.
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 71-76
- MSC: Primary 16E10; Secondary 16D80, 16E50
- DOI: https://doi.org/10.1090/S0002-9939-1993-1150657-1
- MathSciNet review: 1150657