Adding dominating reals with the random algebra
HTML articles powered by AMS MathViewer
- by Haim Judah and Saharon Shelah
- Proc. Amer. Math. Soc. 119 (1993), 267-273
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152278-3
- PDF | Request permission
Abstract:
We show that there are two models $M \subseteq N$ such that by forcing with ${({\text {Random)}}^M}$ over $N$ we add dominating reals. This answers a question of A. Miller.References
- Tomek Bartoszyński, On covering of real line by null sets, Pacific J. Math. 131 (1988), no. 1, 1–12. MR 917862
- Tomek Bartoszyński, Jaime I. Ihoda, and Saharon Shelah, The cofinality of cardinal invariants related to measure and category, J. Symbolic Logic 54 (1989), no. 3, 719–726. MR 1011163, DOI 10.2307/2274736 —, Measure and category in set theory: The assymetry (in preparation).
- Jaime I. Ihoda and Saharon Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), no. 4, 1188–1207. MR 973109, DOI 10.2307/2274613
- Haim Judah and Saharon Shelah, Around random algebra, Arch. Math. Logic 30 (1990), no. 3, 129–138. MR 1080233, DOI 10.1007/BF01621466
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
- Arnold W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic 47 (1982), no. 2, 275–288. MR 654788, DOI 10.2307/2273142
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 267-273
- MSC: Primary 03E40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152278-3
- MathSciNet review: 1152278