Potential space estimates for Green potentials in convex domains
HTML articles powered by AMS MathViewer
- by Stephen J. Fromm
- Proc. Amer. Math. Soc. 119 (1993), 225-233
- DOI: https://doi.org/10.1090/S0002-9939-1993-1156467-3
- PDF | Request permission
Abstract:
Weak type $(1,1)$ bounds are demonstrated for the operators \[ f \mapsto \int {{\nabla _x}{\nabla _x}G(x,y)f(y)dy} \quad {\text {and}}\quad f \mapsto \int {{\nabla _x}{\nabla _y}G(x,y)f(y)dy,} \] where $G$ is the Green operator for the Dirichlet problem for the Poisson equation on a bounded convex domain in ${\mathbb {R}^n}$. These results are used to investigate smoothing properties of the Green operator in potential spaces. An application is given to the restriction of the potential space to the boundary of the domain.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Vilhelm Adolfsson, $L^p$-integrability of the second order derivatives of Green potentials in convex domains, Pacific J. Math. 159 (1993), no. 2, 201â225. MR 1214070
- Vilhelm Adolfsson, $L^2$-integrability of second-order derivatives for Poissonâs equation in nonsmooth domains, Math. Scand. 70 (1992), no. 1, 146â160. MR 1174208, DOI 10.7146/math.scand.a-12391
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Michael GrĂŒter and Kjell-Ove Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), no. 3, 303â342. MR 657523, DOI 10.1007/BF01166225
- David Jerison and Carlos E. Kenig, The functional calculus for the Laplacian on Lipschitz domains, JournĂ©es âĂquations aux DĂ©rivĂ©es Partiellesâ (Saint Jean de Monts, 1989) Ăcole Polytech., Palaiseau, 1989, pp. Exp. No. IV, 10. MR 1030819
- Peter Sjögren, Weak $L_{1}$ characterizations of Poisson integrals, Green potentials and $H^{p}$ spaces, Trans. Amer. Math. Soc. 233 (1977), 179â196. MR 463462, DOI 10.1090/S0002-9947-1977-0463462-1
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 225-233
- MSC: Primary 35J25; Secondary 35B65
- DOI: https://doi.org/10.1090/S0002-9939-1993-1156467-3
- MathSciNet review: 1156467