On $\phi$-extensions of developable spaces
HTML articles powered by AMS MathViewer
- by T. Mizokami
- Proc. Amer. Math. Soc. 119 (1993), 331-336
- DOI: https://doi.org/10.1090/S0002-9939-1993-1165063-3
- PDF | Request permission
Abstract:
We prove that the $\varphi$-extension of Moore spaces is a developable space.References
- Dennis K. Burke, Preservation of certain base axioms under a perfect mapping, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 269–279. MR 0448314
- B. S. Klebanov, On closed and inductively closed images of products of metric spaces, Czechoslovak Math. J. 38(113) (1988), no. 3, 381–388. MR 950291, DOI 10.21136/CMJ.1988.102233 —, On the metrization of $\varphi$-spaces, Soviet Math. Dokl. 20 (1979), 557-560.
- Takemi Mizokami, $\phi$-extensions of Lašnev spaces, Topology Appl. 45 (1992), no. 1, 13–24. MR 1169073, DOI 10.1016/0166-8641(92)90058-8 J. Nagata, Modern general topology, North-Holland, Amsterdam, 1977.
- Akihiro Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1968), 236–254 (1968). MR 230283
- John M. Worrell Jr., Upper semicontinuous decompositions of developable spaces, Proc. Amer. Math. Soc. 16 (1965), 485–490. MR 181982, DOI 10.1090/S0002-9939-1965-0181982-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 331-336
- MSC: Primary 54E30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1165063-3
- MathSciNet review: 1165063