Every attractor of a flow on a manifold has the shape of a finite polyhedron
HTML articles powered by AMS MathViewer
- by Bernd Günther and Jack Segal
- Proc. Amer. Math. Soc. 119 (1993), 321-329
- DOI: https://doi.org/10.1090/S0002-9939-1993-1170545-4
- PDF | Request permission
Abstract:
It is shown that the class of compacta which can occur as attractors of continuous flows on topological manifolds coincides with the class of finite dimensional compacta having the shape of a finite polyhedron.References
- D. V. Anosov and V. I. Arnol′d (eds.), Dynamical systems. I, Encyclopaedia of Mathematical Sciences, vol. 1, Springer-Verlag, Berlin, 1988. Ordinary differential equations and smooth dynamical systems; Translated from the Russian [ MR0823488 (86i:58037)]. MR 970793, DOI 10.1007/978-3-642-61551-1
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451, DOI 10.2140/pjm.1951.1.43
- T. A. Chapman, Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), no. 3, 261–276. MR 320998, DOI 10.4064/fm-76-3-261-276
- Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196
- Ross Geoghegan and R. Richard Summerhill, Concerning the shapes of finite-dimensional compacta, Trans. Amer. Math. Soc. 179 (1973), 281–292. MR 324637, DOI 10.1090/S0002-9947-1973-0324637-1
- H. M. Hastings, A higher-dimensional Poincaré-Bendixson theorem, Glasnik Mat. Ser. III 14(34) (1979), no. 2, 263–268 (English, with Serbo-Croatian summary). MR 646352
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- Peter Mrozik, Mapping cylinders of approaching maps and strong shape, J. London Math. Soc. (2) 41 (1990), no. 1, 159–174. MR 1063553, DOI 10.1112/jlms/s2-41.1.159
- Joel W. Robbin and Dietmar Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 375–393. MR 967645, DOI 10.1017/S0143385700009494
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Richard M. Schori, Chaos: an introduction to some topological aspects, Continuum theory and dynamical systems (Arcata, CA, 1989) Contemp. Math., vol. 117, Amer. Math. Soc., Providence, RI, 1991, pp. 149–161. MR 1112812, DOI 10.1090/conm/117/1112812
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- James E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk, Ann. of Math. (2) 106 (1977), no. 1, 1–18. MR 451247, DOI 10.2307/1971155
- Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, New York, N. Y., 1949. MR 0029491, DOI 10.1090/coll/032
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 321-329
- MSC: Primary 54C56; Secondary 54H20, 57N25, 58F12
- DOI: https://doi.org/10.1090/S0002-9939-1993-1170545-4
- MathSciNet review: 1170545