Discreteness of some continuous spectrum eigenfunction expansions
HTML articles powered by AMS MathViewer
- by Don B. Hinton and Robert M. Kauffman
- Proc. Amer. Math. Soc. 119 (1993), 235-243
- DOI: https://doi.org/10.1090/S0002-9939-1993-1174493-5
- PDF | Request permission
Abstract:
We discuss replacing the integrals in continuous spectrum expansions by finite sums, in the special case of the Dirichlet problem for second-order ordinary differential operators on a half-line. The error is controlled in the operator norm of $B(Y,Z)$, where $Y$ and $Z$ are natural Hilbert spaces for the problem.References
- F. V. Atkinson, On the asymptotic behaviour of the Titchmarsh-Weyl $m$-coefficient and the spectral function for scalar second-order differential expressions, Ordinary and partial differential equations (Dundee, 1982) Lecture Notes in Math., vol. 964, Springer, Berlin, 1982, pp. 1–27. MR 693099, DOI 10.1007/BFb0064985
- K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1989. With a foreword by R. G. Newton. MR 985100, DOI 10.1007/978-3-642-83317-5
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- W. N. Everitt, D. B. Hinton, and J. S. W. Wong, On the strong limit-$n$ classification of linear ordinary differential expressions of order $2n$, Proc. London Math. Soc. (3) 29 (1974), 351–367. MR 409956, DOI 10.1112/plms/s3-29.2.351
- D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of second order differential operators with short and long range potentials, SIAM J. Math. Anal. 17 (1986), no. 1, 182–196. MR 819222, DOI 10.1137/0517017
- D. B. Hinton, M. Klaus, and J. K. Shaw, Series representation and asymptotics for Titchmarsh-Weyl $m$-functions, Differential Integral Equations 2 (1989), no. 4, 419–429. MR 996750
- Robert M. Kauffman, Finite eigenfunction approximations for continuous spectrum operators, Internat. J. Math. Math. Sci. 16 (1993), no. 1, 1–22. MR 1200106, DOI 10.1155/S0161171293000018
- Martin Klaus, On the variation-diminishing property of Schrödinger operators, Oscillations, bifurcation and chaos (Toronto, Ont., 1986) CMS Conf. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 199–211. MR 909910
- Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106, DOI 10.1007/978-3-0348-5485-6
- E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962. MR 0176151
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 235-243
- MSC: Primary 34L10; Secondary 47A70, 47E05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1174493-5
- MathSciNet review: 1174493