Differentiability of the norm in von Neumann algebras
Authors:
Keith F. Taylor and Wend Werner
Journal:
Proc. Amer. Math. Soc. 119 (1993), 475-480
MSC:
Primary 46L10; Secondary 46B07
DOI:
https://doi.org/10.1090/S0002-9939-1993-1149980-6
MathSciNet review:
1149980
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Smooth points in von Neumann algebras are characterized in terms of minimal projections. The theorem generalizes known results for the algebra and the space of bounded linear operators on a Hilbert space.
- [1] Charles A. Akemann and Gert K. Pedersen, Facial structure in operator algebra theory, Proc. London Math. Soc. (3) 64 (1992), no. 2, 418–448. MR 1143231, https://doi.org/10.1112/plms/s3-64.2.418
- [2] C. M. Edwards and G. T. Rüttimann, On the facial structure of the unit balls in a 𝐽𝐵𝑊*-triple and its predual, J. London Math. Soc. (2) 38 (1988), no. 2, 317–332. MR 966303, https://doi.org/10.1112/jlms/s2-38.2.317
- [3] S. Heĭnrih, The differentiability of the norm in spaces of operators, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 93–94 (Russian). MR 0390834
- [4] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. I, II, Academic Press, New York and London, 1983, 1986.
- [5] Fuad Kittaneh and Rahman Younis, Smooth points of certain operator spaces, Integral Equations Operator Theory 13 (1990), no. 6, 849–855. MR 1073855, https://doi.org/10.1007/BF01198920
- [6] Robert R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. MR 984602
- [7] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10, 46B07
Retrieve articles in all journals with MSC: 46L10, 46B07
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1149980-6
Article copyright:
© Copyright 1993
American Mathematical Society