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GROWTH CONDITIONS FOR THIN SETS
IN VILENKIN GROUPS OF BOUNDED ORDER

D. J. GRUBB

(Communicated by J. Marshall Ash)

Abstract. Let G be a Vilenkin group of bounded order and H„ a sequence

of clopen subgroups of G forming a base at the identity. If £ is a subset of

G , let N„{E) denote the number of cosets of H„ which intersect E . If

..       N„{E)      ^
hm--_,   '  , < oo,
—log[G :H„]

then E is a U-set in the group G . It is also shown that for G satisfying a

growth condition and p(n) -» oo , there is an M-set, E , with

N„{E) = 0{<p{n)\og[G :H„}).

Let G be a Vilenkin group, i.e., a compact, totally disconnected, metric
group, and let Hn be a decreasing sequence of open subgroups of G forming

a neighborhood base at the identity of G. If T is the Pontryagin dual of G,
then for every complex valued function {cy] on T, it is possible to form the

"partial sums of the trigonometric series"

S„(c,x)= ^2 cyy(x).

We say that a subset E of G is a set of uniqueness (U-set) if the only
function {cy} which vanishes at infinity on T and whose partial sums converge

to 0 off E is the zero series. In [1] the author showed that for closed sets this
is equivalent to the statement that E supports no pseudofunctions. If a set is

not a U-set, it is called an M-set.

In 1972, Kaufman [4] showed in the classical setting that if a subset of the
circle intersects 0(log(l/e)) intervals of length e, then that subset is a U-set.

The first goal of this paper is to show that an analogous result holds for Vilenkin
groups of bounded order.

The second goal of this paper is to obtain a result similar to one of Kahane
(see [3]). In Kahane's theorem, it is shown that there are M-sets on the circle

intersecting 0(q>(E)lo%(l / e)) intervals of length e as long as cp(E) -too as

e^O.
For a subset F of Cr, let Nn(E) denote the number of cosets of H„ that

intersect E.
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568 D. J. GRUBB

Theorem 1. Let G be a group that is of bounded order. If E is a subset of G

with

(1) lim, N"J:E)„,<oo,
log[C7: Hn]

then E is a set of uniqueness.

Proof. Choose e > 0 so that y £ Y and \y(x) - 1| < e implies y(x) — 1.

This is possible since G is of bounded order. Without loss of generality, we

will assume that Nn(E) < Clog[G : Hn] for all n > 0. Now choose r to

be an integer such that r > 2Clog(n/ sin-1 (e/2)). For each n, let Ln be a

finite set with L„Hn = EH„ and with card(F„) < Clog[C7 : H„]. Break Ln
into r disjoint subsets Lj>n of approximately equal size. There are at most

Cr~x log[G : H„] elements in each Lj>n . But

/ v  Cr"1 logIG :ff„]

(2) .    *  ,„, <[G:Hn]xl2<[G:Hn].
Vsin '(e/2)/

Since there are at most tt/sin-'(e/2) elements of the unit circle such that all

distances are more than e, there are yx,y2£ H^ such that

\Yi(x) - ?2(x)\ < e   for every x eLjt„.

In fact, letting y = j^Ff1 > we see that the cardianlity of the set

rjt„ = {y£ H^ : \y(x) - 1| < e for all x £ LLn\

is at least [G : H„]1/2 and so is unbounded for each j as n —► oo. If

(Vi, ■ ■ ■ , 7P) G Ti >n x • • • x Tr>n , then since each yj e H^ and F//„ = L„Hn ,

r

(3) Ec[J{x:\yj(x)-l\<E}.
/=i

By our choice of e , for such (yx, ... , yp), we have

r

(4) £c[Jker(JV).
;'=i

For each p > 1, we choose particular (yx, ... ,yr) as follows.  Choose n

large enough so that cardr;,„ > (2r - l)card/^-.

Pick any yx £Tx>n. If yx,... , yj-X have been chosen, pick

y]zTJ,n\{jfx%>--ypxHPL

where the union is over all sequences Ci,..., e,-_i whose terms are all -1 or

0. Because the cardinality of Tjy„ is large, such a choice is possible. The
upshot is that no character of the form y\l ■■■ yf', where each Ej is 0 or 1, can

be in Hp   unless each Ej — 0. Now define

fp = W-Vj)-
;=i
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VILENKIN GROUPS OF BOUNDED ORDER 569

Then fp = 0 on the neighborhood EHn of E and (1 -fP)A(x) = 0 if x e #pX ■
If S is any pseudofunction supported on E, we have 5(JJ,) = 0, so

|S(l)|<(2'-l)sup|SC*)|

where the supremum is taken over those x $■ Hp . Since r is fixed and the

supremum goes to 0 as p -» oo, S( 1) = 0. By a standard argument, S = 0.

Thus E is a U-set.   □

It was previously known that if N„(E) = o(log[C7 : Hn]), then E is a Dirich-

let set and hence a strong U-set [2].

Now we turn to the question of the converse: how slow can N„(E) grow

for an M-set? For the classical case, [3] shows that if <p(s) —> oo as e -+ 0

there are sets in the circle group such that Ne(E) = 0(cp(s) log(l/e)) and yet E
fails to be a U-set. To get this result, Kahane used the properties of Brownian

motion. For the corresponding result in the current setting, we have to produce

an analog of Brownian motion on Vilenkin groups. I would like to thank Robert

Kaufman for his suggestions at this point.
Let £xh„ be a random point with values in H„ which is uniformly distributed

with respect to normalized Haar measure on Hn . We will assume that different

£XHk are independent random points. Thus, if y £ T, we have

Notice that there is a separate random point for each coset of each Hn . We

now define a random function on G by

oo

(6) ¥>W = £W

Notice that this sum converges for every point in G and that for two points

x, y £ G, if xH„ = yH„ then y/(x)H„ — y/(y)H„ . Thus y/ enjoys a type of
Lipschitz continuity. Thus we have for a subset E of G,

(7) Nn(y,(E)) < Nn(E).

Now we present a converse to Theorem 1.

Theorem 2. Let G be a Vilenkin group. Assume that there is a constant C such

that

t&\ v^ lG: Hn+l] ^ _(8) g[GT^F<0°-

Let cp(n) t oo as n —► oo. Then there exists an M-set E in G such that

(9) Nn(E) = 0(<p(n)log[G ://„]).

Proof. Let 6(n) = <p(n)log[G : H„]. Let kn be integers such that

6(n)<kxk2---kn <26(n).

Pick k„ points of Hn in distinct cosets of Hn+X and let pn be a discrete

measure on these points giving equal measure to each of them. Let p = *°lj pn .

Then p is a measure supported on a set E with

N„(E)<28(n)   and   p(xHn) <l/6(n)   forall«>0.
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570 D. J. GRUBB

Now consider the random measure u where

/ fdv = j foy/dp.

For y £ H^+l\H^, we have

D(y)= / yoy/dp^Y^ /     7 ° M/* = £ /     X\yi^yHk)dp(y)
,.m JG xH„JxH" XH„JxH"k=0

= £/    f[y^Hk)dp(y) = YJP{xHn)f{y(^xHk).
XH„ JxIi" k=0 xH„ k=0

Notice that for y £ xHn , it follows that £XHk = £yHk for all k < n . For each

coset xH„ , we introduce the random variable

n

YxHn=p(xHn)Y[y(£xHk).
k=0

Then \Yxh„\ = p(xHn), and by taking conditional expectations with respect

to all the £XHn for this fixed n , we have that the Yxh„ are conditionally inde-

pendent and

E[YxHn\{ZxHn:x£G}] = 0.

Thus, using a sub-Gaussian inequality, we have for real t,

E[exp(tRei>(y))\{ZxHn : x £ G}]

= E  exp I £ tRe YxIin ] \{^xHn : x £ G}

\xHn J

(! 1) = I] F[exp(*Re YxHn)\{ZxH, : x 6 G}] < J] cxp(t2p(xHn)2)
xH„ xH„

= explt2J£p(xHn)2) <exp(j^yj .

\    xHn J

Now we have

(12) E[exp(tReO(y))]<exp(j^j.

A similar expression holds for Im i)(y). Recalling the definition of 6(n), we

see

P[Rei>(y) > cp(n)-l/3] < exp (-l-<p(n)x'3log[G : Hn])

(13) V  j '

~ [G : //n]P(»)1/3/4 •

This holds for each y £ H„+X\H^ , so

(14) P[3y £ Ht+l\Ht- such that Rei>(y) > 9>(«r'/3] < [(}^^%A ■
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VILENKIN GROUPS OF BOUNDED ORDER 571

Since similar expressions hold for -Rei>(j>) and Im v(y) in place of Rev(y),

and since <p(n) —► oo, an application of the Borel-Cantelli Lemma along with

(8) shows that limi>(y) = 0 almost surely.   □

Notice that all Vilenkin groups of bounded order satisfy the condition in (8).

In fact, any group with growth like exp(exp(n)) satisfies this condition.

Using the methods above, we may prove the following result.

Theorem 3. Let G be a Vilenkin group satisfying the condition in (8). Given

S > 0 there is a subset E of G such that N„(E) = 0(log[C7 : H„]) and a

measure v supported on E with lim|i>(y)| < 8, where the limit is taken as

y -» oo in T. By Theorem 2 of [2], we see that E is not a Dirichlet set.

Proof. In the previous proof, simply let cp(n) be a constant where cp(n)x^ > 4C
and tp(n)~x/3 < 6 .   □

Acknowledgment

I would like to thank Robert Kaufman of the University of Illinois for sug-

gestions leading to substantial improvements in Theorems 2 and 3.

References

1. D. J.Grubb, U-sets in compact, O-dimensional, metric groups, Canad. Math. Bull. 32(1989),

149-155.

2. _, Dirichlet sets in Vilenkin groups, Acta Math. Hungar. (to appear).

3. J. P. Kahane, A metric condition for a closed circular set to be a set of uniqueness, J. Approx.

Theory 2 (1969), 233-246.

4. Robert Kaufman, Kronecker sets and metric properties of MQ-sets, Proc. Amer. Math. Soc.

36(1972), 519-524.

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506

Current address: Department of Mathematical Sciences, Northern Illinois University, DeKalb,

Illinois 60115
E-mail address: grubb@math.niu.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


