GROWTH CONDITIONS FOR THIN SETS IN VILENKIN GROUPS OF BOUNDED ORDER

D. J. GRUBB

(Communicated by J. Marshall Ash)

ABSTRACT. Let G be a Vilenkin group of bounded order and H_n a sequence of clopen subgroups of G forming a base at the identity. If E is a subset of G, let $N_n(E)$ denote the number of cosets of H_n which intersect E. If

$$\underline{\lim} \frac{N_n(E)}{\log[G:H_n]} < \infty,$$

then E is a U-set in the group G. It is also shown that for G satisfying a growth condition and $\varphi(n) \to \infty$, there is an M-set, E, with

$$N_n(E) = O(\varphi(n)\log[G:H_n]).$$

Let G be a Vilenkin group, i.e., a compact, totally disconnected, metric group, and let H_n be a decreasing sequence of open subgroups of G forming a neighborhood base at the identity of G. If Γ is the Pontryagin dual of G, then for every complex valued function $\{c_\gamma\}$ on Γ , it is possible to form the "partial sums of the trigonometric series"

$$S_n(c, x) = \sum_{\gamma \in H^{\perp}} c_{\gamma} \gamma(x).$$

We say that a subset E of G is a set of uniqueness (U-set) if the only function $\{c_{\gamma}\}$ which vanishes at infinity on Γ and whose partial sums converge to 0 off E is the zero series. In [1] the author showed that for closed sets this is equivalent to the statement that E supports no pseudofunctions. If a set is not a U-set, it is called an M-set.

In 1972, Kaufman [4] showed in the classical setting that if a subset of the circle intersects $O(\log(1/\varepsilon))$ intervals of length ε , then that subset is a U-set. The first goal of this paper is to show that an analogous result holds for Vilenkin groups of bounded order.

The second goal of this paper is to obtain a result similar to one of Kahane (see [3]). In Kahane's theorem, it is shown that there are M-sets on the circle intersecting $O(\varphi(\varepsilon)\log(1/\varepsilon))$ intervals of length ε as long as $\varphi(\varepsilon) \to \infty$ as $\varepsilon \to 0$.

For a subset E of G, let $N_n(E)$ denote the number of cosets of H_n that intersect E.

Received by the editors July 23, 1991 and, in revised form, January 13, 1992 and February 26, 1992.

1991 Mathematics Subject Classification. Primary 42C25; Secondary 43A46.

568 D. J. GRUBB

Theorem 1. Let G be a group that is of bounded order. If E is a subset of G with

$$\underline{\lim} \frac{N_n(E)}{\log[G:H_n]} < \infty,$$

then E is a set of uniqueness.

Proof. Choose $\varepsilon > 0$ so that $\gamma \in \Gamma$ and $|\gamma(x) - 1| < \varepsilon$ implies $\gamma(x) = 1$. This is possible since G is of bounded order. Without loss of generality, we will assume that $N_n(E) < C \log[G: H_n]$ for all $n \ge 0$. Now choose r to be an integer such that $r > 2C \log(\pi/\sin^{-1}(\varepsilon/2))$. For each n, let L_n be a finite set with $L_n H_n = E H_n$ and with $\operatorname{card}(L_n) < C \log[G: H_n]$. Break L_n into r disjoint subsets $L_{j,n}$ of approximately equal size. There are at most $Cr^{-1}\log[G: H_n]$ elements in each $L_{j,n}$. But

(2)
$$\left(\frac{\pi}{\sin^{-1}(\varepsilon/2)}\right)^{Cr^{-1}\log[G:H_n]} < [G:H_n]^{1/2} < [G:H_n].$$

Since there are at most $\pi/\sin^{-1}(\varepsilon/2)$ elements of the unit circle such that all distances are more than ε , there are γ_1 , $\gamma_2 \in H_n^{\perp}$ such that

$$|\gamma_1(x) - \gamma_2(x)| < \varepsilon$$
 for every $x \in L_{j,n}$.

In fact, letting $\gamma = \gamma_2 \gamma_1^{-1}$, we see that the cardianlity of the set

$$\Gamma_{i,n} = \{ \gamma \in H_n^{\perp} : |\gamma(x) - 1| < \varepsilon \text{ for all } x \in L_{i,n} \}$$

is at least $[G:H_n]^{1/2}$ and so is unbounded for each j as $n\to\infty$. If $(\gamma_1,\ldots,\gamma_p)\in\Gamma_{1,n}\times\cdots\times\Gamma_{r,n}$, then since each $\gamma_j\in H_n^\perp$ and $EH_n=L_nH_n$,

(3)
$$E \subseteq \bigcup_{j=1}^{r} \{x : |\gamma_j(x) - 1| < \varepsilon\}.$$

By our choice of ε , for such $(\gamma_1, \ldots, \gamma_p)$, we have

(4)
$$E \subseteq \bigcup_{j=1}^{r} \ker(\gamma_j).$$

For each $p \ge 1$, we choose particular $(\gamma_1, \ldots, \gamma_r)$ as follows. Choose n large enough so that card $\Gamma_{j,n} \ge (2^r - 1)$ card H_p^{\perp} .

Pick any $\gamma_1 \in \Gamma_{1,n}$. If $\gamma_1, \ldots, \gamma_{j-1}$ have been chosen, pick

$$\gamma_j \in \Gamma_{j,n} \setminus \bigcup \gamma_1^{\varepsilon_1} \gamma_2^{\varepsilon_2} \cdots \gamma_{j-1}^{\varepsilon_{j-1}} H_p^{\perp}$$

where the union is over all sequences $\varepsilon_1, \ldots, \varepsilon_{j-1}$ whose terms are all -1 or 0. Because the cardinality of $\Gamma_{j,n}$ is large, such a choice is possible. The upshot is that no character of the form $\gamma_1^{\varepsilon_1} \cdots \gamma_r^{\varepsilon_r}$, where each ε_j is 0 or 1, can be in H_p^{\perp} unless each $\varepsilon_j = 0$. Now define

$$f_p = \prod_{i=1}^r (1 - \gamma_i).$$

Then $f_p=0$ on the neighborhood EH_n of E and $(1-f_p)^{\wedge}(\chi)=0$ if $\chi\in H_p^{\perp}$. If S is any pseudofunction supported on E, we have $S(f_p)=0$, so

$$|\widehat{S}(1)| \leq (2^r - 1) \sup |\widehat{S}(\chi)|$$

where the supremum is taken over those $\chi \notin H_p^{\perp}$. Since r is fixed and the supremum goes to 0 as $p \to \infty$, $\widehat{S}(1) = 0$. By a standard argument, S = 0. Thus E is a U-set. \square

It was previously known that if $N_n(E) = o(\log[G:H_n])$, then E is a Dirichlet set and hence a strong U-set [2].

Now we turn to the question of the converse: how slow can $N_n(E)$ grow for an M-set? For the classical case, [3] shows that if $\varphi(\varepsilon) \to \infty$ as $\varepsilon \to 0$ there are sets in the circle group such that $N_{\varepsilon}(E) = O(\varphi(\varepsilon)\log(1/\varepsilon))$ and yet E fails to be a U-set. To get this result, Kahane used the properties of Brownian motion. For the corresponding result in the current setting, we have to produce an analog of Brownian motion on Vilenkin groups. I would like to thank Robert Kaufman for his suggestions at this point.

Let ξ_{xH_n} be a random point with values in H_n which is uniformly distributed with respect to normalized Haar measure on H_n . We will assume that different ξ_{xH_k} are independent random points. Thus, if $\gamma \in \Gamma$, we have

(5)
$$E[\gamma(\xi_{xH_n})] = \begin{cases} 1 & \text{if } \gamma \in H_n^{\perp}, \\ 0 & \text{otherwise.} \end{cases}$$

Notice that there is a separate random point for each coset of each H_n . We now define a random function on G by

(6)
$$\psi(x) = \sum_{n=0}^{\infty} \xi_{xH_n}.$$

Notice that this sum converges for every point in G and that for two points $x, y \in G$, if $xH_n = yH_n$ then $\psi(x)H_n = \psi(y)H_n$. Thus ψ enjoys a type of Lipschitz continuity. Thus we have for a subset E of G,

(7)
$$N_n(\psi(E)) \leq N_n(E).$$

Now we present a converse to Theorem 1.

Theorem 2. Let G be a Vilenkin group. Assume that there is a constant C such that

(8)
$$\sum_{n=0}^{\infty} \frac{[G:H_{n+1}]}{[G:H_n]^C} < \infty.$$

Let $\varphi(n) \uparrow \infty$ as $n \to \infty$. Then there exists an M-set E in G such that

(9)
$$N_n(E) = O(\varphi(n)\log[G:H_n]).$$

Proof. Let $\theta(n) = \varphi(n) \log[G: H_n]$. Let k_n be integers such that

$$\theta(n) \leq k_1 k_2 \cdots k_n \leq 2\theta(n)$$
.

Pick k_n points of H_n in distinct cosets of H_{n+1} and let μ_n be a discrete measure on these points giving equal measure to each of them. Let $\mu = \bigstar_{n=1}^{\infty} \mu_n$. Then μ is a measure supported on a set E with

$$N_n(E) \le 2\theta(n)$$
 and $\mu(xH_n) \le 1/\theta(n)$ for all $n \ge 0$.

570 D. J. GRUBB

Now consider the random measure ν where

$$\int f \, d\nu = \int f \circ \psi \, d\mu.$$

For $\gamma \in H_{n+1}^{\perp} \backslash H_n^{\perp}$, we have

(10)
$$\hat{\nu}(\gamma) = \int_{G} \gamma \circ \psi \, d\mu = \sum_{xH_{n}} \int_{xH_{n}} \gamma \circ \psi \, d\mu = \sum_{xH_{n}} \int_{xH_{n}} \prod_{k=0}^{\infty} \gamma(\xi_{yH_{k}}) \, d\mu(y) \\ = \sum_{xH_{n}} \int_{xH_{n}} \prod_{k=0}^{n} \gamma(\xi_{xH_{k}}) \, d\mu(y) = \sum_{xH_{n}} \mu(xH_{n}) \prod_{k=0}^{n} \gamma(\xi_{xH_{k}}) \, .$$

Notice that for $y \in xH_n$, it follows that $\xi_{xH_k} = \xi_{yH_k}$ for all $k \le n$. For each coset xH_n , we introduce the random variable

$$Y_{xH_n} = \mu(xH_n) \prod_{k=0}^n \gamma(\xi_{xH_k}).$$

Then $|Y_{xH_n}| = \mu(xH_n)$, and by taking conditional expectations with respect to all the ξ_{xH_n} for this fixed n, we have that the Y_{xH_n} are conditionally independent and

$$E[Y_{xH_n}|\{\xi_{xH_n}:x\in G\}]=0.$$

Thus, using a sub-Gaussian inequality, we have for real t,

(11)
$$E[\exp(t\operatorname{Re}\hat{\nu}(\gamma))|\{\xi_{xH_n}:x\in G\}]$$

$$=E\left[\exp\left(\sum_{xH_n}t\operatorname{Re}Y_{xH_n}\right)|\{\xi_{xH_n}:x\in G\}\right]$$

$$=\prod_{xH_n}E[\exp(t\operatorname{Re}Y_{xH_n})|\{\xi_{xH_n}:x\in G\}]\leq\prod_{xH_n}\exp(t^2\mu(xH_n)^2)$$

$$=\exp\left(t^2\sum_{xH_n}\mu(xH_n)^2\right)\leq\exp\left(\frac{t^2}{\theta(n)}\right).$$

Now we have

(12)
$$E[\exp(t\operatorname{Re}\hat{\nu}(\gamma))] \leq \exp\left(\frac{t^2}{\theta(n)}\right).$$

A similar expression holds for $\operatorname{Im} \hat{\nu}(\gamma)$. Recalling the definition of $\theta(n)$, we see

(13)
$$P[\operatorname{Re} \hat{\nu}(\gamma) > \varphi(n)^{-1/3}] \leq \exp\left(-\frac{1}{4}\varphi(n)^{1/3}\log[G:H_n]\right) \\ \leq \frac{1}{[G:H_n]^{\varphi(n)^{1/3}/4}}.$$

This holds for each $\gamma \in H_{n+1}^{\perp} \setminus H_n^{\perp}$, so

(14)
$$P[\exists \gamma \in H_{n+1}^{\perp} \setminus H_n^{\perp} \text{ such that } \operatorname{Re} \hat{\nu}(\gamma) > \varphi(n)^{-1/3}] < \frac{[G:H_{n+1}]}{[G:H_n]^{\varphi(n)^{1/3}/4}}$$

Since similar expressions hold for $-\text{Re }\hat{\nu}(\gamma)$ and $\text{Im }\hat{\nu}(\gamma)$ in place of $\text{Re }\hat{\nu}(\gamma)$, and since $\varphi(n)\to\infty$, an application of the Borel-Cantelli Lemma along with (8) shows that $\lim \hat{\nu}(\gamma)=0$ almost surely. \square

Notice that all Vilenkin groups of bounded order satisfy the condition in (8). In fact, any group with growth like $\exp(\exp(n))$ satisfies this condition. Using the methods above, we may prove the following result.

Theorem 3. Let G be a Vilenkin group satisfying the condition in (8). Given $\delta > 0$ there is a subset E of G such that $N_n(E) = O(\log[G:H_n])$ and a measure ν supported on E with $\overline{\lim}|\hat{\nu}(\gamma)| \leq \delta$, where the limit is taken as $\gamma \to \infty$ in Γ . By Theorem 2 of [2], we see that E is not a Dirichlet set.

Proof. In the previous proof, simply let $\varphi(n)$ be a constant where $\varphi(n)^{1/3} > 4C$ and $\varphi(n)^{-1/3} < \delta$. \square

ACKNOWLEDGMENT

I would like to thank Robert Kaufman of the University of Illinois for suggestions leading to substantial improvements in Theorems 2 and 3.

REFERENCES

- 1. D. J. Grubb, U-sets in compact, 0-dimensional, metric groups, Canad. Math. Bull. 32 (1989), 149-155.
- 2. ____, Dirichlet sets in Vilenkin groups, Acta Math. Hungar. (to appear).
- 3. J. P. Kahane, A metric condition for a closed circular set to be a set of uniqueness, J. Approx. Theory 2 (1969), 233-246.
- 4. Robert Kaufman, Kronecker sets and metric properties of M₀-sets, Proc. Amer. Math. Soc. 36 (1972), 519-524.

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66506

Current address: Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115

E-mail address: grubb@math.niu.edu