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A GENERAL HOPF LEMMA
AND PROPER HOLOMORPHIC MAPPINGS

BETWEEN CONVEX DOMAINS IN C"

PETER R. MERCER

(Communicated by Clifford J. Earle, Jr.)

Abstract. We use a general version of the well-known Hopf lemma to study

boundary regularity of proper holomorphic mappings between some bounded

convex domains in C which carry no boundary regularity assumption.

0. Introduction

Let Qx and Q2 be domains in C" and Cm respectively. A continuous

mapping /: Qi —> Q2 is proper provided f~x(K) is compact in Q.x whenever

K is compact in Q2. If Qi and Q2 are bounded, this is equivalent to the

requirement that f(Zj) —> dQ2 whenever {z;} c Qx is such that Zj —> dQx.

A biholomorphic mapping is proper since in this case /_' is continuous.

The problem of boundary regularity of proper holomorphic mappings has

been studied by many authors (see the survey article [F] and the references

therein). In most cases the domains in question are assumed to possess at least

C2 boundary regularity. This paper studies the problem for certain bounded

domains in C" which carry no such assumption.

In § 1 we fix notation and recall some fundamental ideas, including a general-

ization of the well-known Hopf lemma which requires only a cone condition on

the domain in question rather than boundary smoothness. In §2 we apply this

result to obtain some sufficient conditions on bounded domains Oi, Q2 c C"

for a proper holomorphic mapping /: Qi -* Q2 to have a Holder continuous

extension to Qi . In particular, we study a case where Qi and Q2 are convex

with no presupposed boundary regularity.
The content of this paper will constitute part of the author's doctoral thesis.

The author is grateful to Ian Graham, his thesis advisor, for numerous useful

discussions and suggestions.

1. Preliminaries

We recall some important notions to be used in the sequel. Q denotes a

domain (= connected open set) and Bn denotes the unit ball in C" defined
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via the usual (Hermitian) inner product. If n - I, write Bn = A, the unit disk

in C.

Definition 1.1. Let QcC". The Kobayashi metric Ka: T(Q.) —► R+ is given
by

Ka(z; v) = inf{\u\ : 3f £ Hol(A, Q) such that /(0) = z, f'(0)u = v} .

General properties of Ko_ may be found, for example, in [K] or [Kr2].

If Q <g C" is convex, z £ Q, and v £ C", denote by rci(z; v) the radius

of the largest one complex-dimensional closed disk, centred at z, tangent to

v, and contained in Q. In this case, Graham [G2, G3] showed that for any

v £C" we have

(i) rm<Kf!(z;«)<-7^   vzefl.
2rci(z;v) ru(z;v)

Let Q C C". Recall that an upper semicontinuous function tp: Q —>

[-oo, oo) is plurisubharmonic (plush) if for every z, w £ C" , the function X -*

cp(Xz + w) is subharmonic on Q.zw = {X £ C : Xz + w £ £1}. A pluripolar set is

the -oo set of a nontrivial plush function.

We state a theorem, which gathers several important results about proper

holomorphic mappings. These results appear in [Ru, Chapter 15] and we adopt

the notation used there. Let £lx, Q2 c C", and let f:Qx -> £l2 be proper
holomorphic. Let E — {z £ Q: det[/'(z)] = 0}. For any set A, denote by

#(A) the cardinality of A. In this situation we have

Theorem 1.2. (i) /(Qi) = Q2
(ii) Q.2\f(E) is open, connected, and dense in Q2.
(iii) f(E) is an analytic subvariety of Cl2 .
(iv) There is a positive integer m (called the multiplicity of f) such that:

(a) Ifw £ f(E) then #(f~l(w)) <m.
(b) Ifw£ Q2\/(F) then #(f~x(w)) = m and

there is a neighbourhood W of w and m disjoint open connected sets Ux, ... ,

Um c Qi such that f~l(W) = UxU---UUm and f = f\vj is biholomorphic

on Uj with f°fjl(w) = w, 1 < j < m.

We fix some further notation. For z £ Q c C" , denote by da(z) the

Euclidean distance from z to d£l. For p £ C" , 6 £ (0, n), v £ dBn (con-

sidered as a unit vector), and r > 0, denote by T(p, 6, v, r) the open cone in

C" with vertex p, aperture 0 , axis along v , and height r. To be explicit, set

H = {z £ C" : Re(z, v) = 0}; H is the (2n - 1) real-dimensional boundary

of a half space n, which has v as an inner unit normal vector. Thus

T(p, 6,v,r) = {z£n+p: \z-p\ <adn+P(z), \z - p\ < r},

where a > 1 is given by 6 = 2cos-1 (1 /a). The axis of F(p, 6, v, r) is the

segment {p + tv : 0 < t < r} .

Definition 1.3. Let Q c C" and let 9 £ (0, n). We say that Q satisfies a
c?-cone condition if there is an r > 0 with the following property: Each z £ Q

sufficiently close to dQ. lies on the axis of a cone T(p, 6, v, r) c Q. for some

p£d£l, v£dBn.
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Such a condition arises in potential theory and the theory of partial differen-

tial equations. For example, a Lipschitz domain (a domain whose interior and

boundary are given locally by a Lipschitz function) satisfies a 0-cone condition.

The following is the promised version of the Hopf lemma, the proof of which

is a modification of that of [FS, Proposition 12.2]. We are grateful to the referee

for bringing to our attention that an even more general version is known [O,

Mil, Mi2].

Proposition 1.4. Let figC" satisfy a 6-cone condition. Let cp: Q -+ [-00, 0)

be plush. There is a c > 0 and an a > 1   (a = n/6) such that

cp(z) < -cd^(z)   Vzefi.

Remark 1.4.1. If Q g C" is convex then Q satisfies a 0-cone condition (see

the proof of Lemma 2.2). The integrated form ka of Krj is the well-known

Kobayashi distance on Q [Roy] (see also [K, Kr2]). We remark further that

in this case Lempert [L] showed that for each fixed zq £ H the function

logtanh/cn(zo, •) is plush on Q. Now whenever e > 0 is small, we have

-x < log(l - (1 - e)x) for small x > 0. Proposition 1.4 together with Lem-

pert's result implies then that there is a c > 0 (depending only on zo) and an

a > 1 such that

ka(zo,z)<c-\lo%d^(z)   Vzefi.

This inequality appears in [Me].

Remark 1.4.2. If Q <g C" has piecewise smooth boundary in the sense of [RI]

then Q satisfies a 0-cone condition. Clearly, such a domain need not be con-

vex. Conversely, a (bounded) convex domain need not have piecewise smooth

boundary. See also Remark 2.6.1.

2. Application to proper holomorphic mappings

Definition 2.1. Let flgC" be starshaped with respect to 0 e Q. The Minkow-

ski Functional p& : C" —► R for Q with respect to 0 is given by

,  v      f inf[t > 0 : z/t £ Q],        z^O,

^(Z) = \0, z = 0.

Then we have Q = {p& < 1} , dGl = {pp. = 1}, and f2c = {pa > 1} .

Lemma 2.2. Let £2 <s C" be convex with Oefl. The function pq - 1 : Q ->
[-1,0) is plush and there is a c > 0 such that

-cdn(z) < pa(z) - 1   VzeQ.

Proof. Since Q is convex, pa is a convex function and the first assertion fol-

lows.
There is a 6 £ (0, n) and an r > 0 such that for each p £ 9Q we have

Tp = T(p, 6, -p/\p\, r) c Q. Now to prove the second assertion it suffices to
consider points z £Q, near dQ,. For such a z, set p = p(z) = z/pc\(z) £ dQ..

We may assume that z 6 Yp . Let a - inf[|/?|: p £ d£l]. Then

dcl(z)>drp(z) = \p-z\sin(9/2)

= (1 -pa(z))\p\sin(6/2) > (l-pa(z))asin(e/2),

and the result follows.   □
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Proposition 2.3. Let Qx, Q2 <^ C" be convex. Let f: Qx —► Cl2 be proper

holomorphic. There is an a > 1 and constants ax, a2 > 0 such that

(2) axd^(z)<dQ2(f(z))<a2dx^(z)   Vz e Q,.

Proof. We may assume that 0 £ fi2 ; set #>2 = /iq2 - 1. / is holomorphic and

p2 is plush (Lemma 2.2), so cp2of is plush on Qi . Now Qi satisfies a 0-cone

condition, so Proposition 1.4 provides a y > 1 and a c > 0 such that

<p2of(z)<-cdni(z)   Vzefi,.

The left-hand inequality in (2) now follows from Lemma 2.2.

To prove the right-hand inequality we adopt the terminology of Theorem 1.2

and employ some ideas appearing in [P]. We may assume that 0 £ £lx; set

<Pi - Po.t - 1 • Fix a point wq £ Q2\f(E) and let IF be a neighbourhood of
too as in Theorem 1.2(iv)(b). Define y/j: W —► Uj by

(3) y/j(w) = <pxofrx(w),        l<j<m.

The function y/(w) = max[y/j(w) : 1 < j < m] is then well defined, plush

on il2\f(E), and also bounded there. Now by Theorem 1.2(iii), /(F) is an

analytic subvariety of Q2 and as such it is a pluripolar set. The appropriate
extension theorem (e.g., [LG, Proposition 1.22]) shows that y/ extends to a

plush bounded function on all of Q2 , which we denote again by y/ .

By Proposition 1.4 there is a ft > 1 and a cx > 0 such that

y/(w) < -cxd^2(w)   Vu; £ Q2;

thus,

(4) y/j(w) < -cxd^2(w)   Vw e Q2\f(E),  l<j<m.

By Lemma 2.2 there is a c2 > 0 such that

-c2dni(z) < tpi(z)   VzeQi;

thus (observing Theorem 1.2(i)),

(5) -c2rfn,(/;-V))<?>i°/;"V)   Vu;eQ2\/(F),   l<j<m.

With w = f(z), (3)-(5) provide a C3 > 0 such that

<(/(*)) < c3dQl(fj-1 o f(z))   VzeQ,\F,   l<j<m.

Choosing the correct j, we have

(6) d^(f(z))<c3dai(z)   VzeQ,\F.

Finally, by continuity and Theorem 1.2(h), (6) holds for all z e Qi. Thus
the right-hand inequality in (2) holds, and the proof is complete upon letting

a = max(y, /?).   □

Definition 2.4. Let Q d C" be convex. We say that Q is m-convex if there is
an m £ (0, 00) and a c > 0 such that for every v £ C" we have

ra(z;v)<cdHm(z)   Vzefi.

We remark that a C2-bounded domain with positive definite real Hessian is

2-convex. In general (for n > 2) we must have m>2. m-convex domains are
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the focus of much of [Me]. Consideration of (1) shows that if ft is m-convex

then there is a c > 0 such that

(7) ^iK^v)<-^r> *<'•»>er<">-

Lemma 2.5. Let ft <§ C be convex. Let ft £ (0, 1) and f £ C'(ft). Suppose

that there is a c > 0 such that |V/(z)| < cd^~x(z) Vz £ ft. F/Vre is a cx > 0

smc/z r/zar

(8) |/(z)-/(«;)| ^dlz-^l^   Vz,weft.

As such, f extends to a continuous function on ft and (8) holds there also (i.e.,

the extension is Holder continuous with exponent /?).

Proof. The first assertion follows from appropriate modifications of standard
techniques that appear, for example, in [Krl, Lemma 4.7]. In that lemma ft

has C2 boundary only; the absence of such an assumption in the present case

is made up for by the convexity hypothesis. The rest of the lemma follows from

elementary arguments.   □

Proposition 2.6. Let ft], ft2 <g C" with Qx convex and ft2 m-convex. Let

f: ftj -> ft2 be proper holomorphic. Then f extends to a Holder continuous

mapping on fti.

Proof. By the distance decreasing property of Kn, (7), and Proposition 2.3
there is a c > 0 and an a > 1 such that

\f'(z)v\ < Cd*£$M < «C-!WM    V(z, v) £ F(ft).

Thus each component of f satisfies the hypothesis of Lemma 2.5 with /? =

I /am , and we are done.   □

Remark 2.6.1. [RI] (respectively [R2]) contains results analogous to Proposi-

tions 2.3 and 2.6 in case fti and ft2 are bounded domains with piecewise
smooth strictly pseudoconvex boundaries (respectively, bounded convex do-

mains with real analytic boundaries) and /: fti -► ft2 is biholomorphic rather

than just proper holomorphic. Berteloot [B] has independently studied Holder

continuity for proper holomorphic maps between certain pseudoconvex domains

with piecewise smooth boundaries. See also Remark 1.4.2.

We have already noted that Lemma 2.5 holds if Q <g C" is C2-bounded
rather than convex [Krl, Lemma 4.7]. Also, estimates such as (2) and (7)

are already known to hold in situations where the domains in question have

good boundary regularity. For example, (2) holds if Qx, Q2 <g C are C°°-

pseudoconvex [R2], or if Qx, Q2 <g C" are C2-strictly pseudoconvex; here

a = 1 [P]. Estimate (7) holds if Q € C is pseudoconvex with real analytic

boundary [DF], or if ft € C" is C2-strictly pseudoconvex; here m = 2 [Gl]
(see also [H]). Consequently, results analogous to Proposition 2.6 hold for such
cases [R2, P, H, DF]. Finally, assumptions on ft! and ft2 may be varied
considerably among these cases to obtain still more versions of Proposition 2.6.
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