Reduction numbers and Rees algebras of powers of an ideal
HTML articles powered by AMS MathViewer
- by Lê Tuan Hoa
- Proc. Amer. Math. Soc. 119 (1993), 415-422
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152984-0
- PDF | Request permission
Abstract:
Let $I$ be an ideal in a Noetherian local ring $(R,\mathfrak {m})$. It is shown that for $n \gg 0$ the reduction number ${r_J}({I^n})$ of ${I^n}$ with respect to a minimal reduction $J$ is not only independent from the choice of $J$ but also is stable. If $I$ is an $\mathfrak {m}$-primary ideal, we give a criterion for the Rees algebra $R[{I^n}t]$ with $n \gg 0$ to be Cohen-Macaulay.References
- Markus Brodmann, Local cohomology of certain Rees- and form-rings. II, J. Algebra 86 (1984), no. 2, 457–493. MR 732261, DOI 10.1016/0021-8693(84)90043-7
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- M. Fiorentini and L. T. Hoa, Some remarks on generalized Cohen-Macaulay rings, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), no. 4, 507–519. MR 1315836
- Shiro Goto and Yasuhiro Shimoda, On the Rees algebras of Cohen-Macaulay local rings, Commutative algebra (Fairfax, Va., 1979) Lecture Notes in Pure and Appl. Math., vol. 68, Dekker, New York, 1982, pp. 201–231. MR 655805
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- M. Herrmann, J. Ribbe, and S. Zarzuela, On the Gorenstein property of Rees and form rings of powers of ideals, Trans. Amer. Math. Soc. 342 (1994), no. 2, 631–643. MR 1159193, DOI 10.1090/S0002-9947-1994-1159193-5
- J. Herzog, A. Simis, and W. V. Vasconcelos, On the canonical module of the Rees algebra and the associated graded ring of an ideal, J. Algebra 105 (1987), no. 2, 285–302. MR 873664, DOI 10.1016/0021-8693(87)90194-3
- Sam Huckaba, Reduction numbers for ideals of higher analytic spread, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 49–57. MR 886434, DOI 10.1017/S0305004100067037
- Sam Huckaba, On complete $d$-sequences and the defining ideals of Rees algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 3, 445–458. MR 1010369, DOI 10.1017/S0305004100068183
- Ngô Việt Trung and Shin Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra 17 (1989), no. 12, 2893–2922. MR 1030601, DOI 10.1080/00927878908823885
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- Akira Ooishi, Castelnuovo’s regularity of graded rings and modules, Hiroshima Math. J. 12 (1982), no. 3, 627–644. MR 676563
- Akira Ooishi, Stable ideals in Gorenstein local rings, J. Pure Appl. Algebra 69 (1990), no. 2, 185–191. MR 1086560, DOI 10.1016/0022-4049(90)90042-G
- Judith D. Sally, Tangent cones at Gorenstein singularities, Compositio Math. 40 (1980), no. 2, 167–175. MR 563540
- Judith D. Sally, Reductions, local cohomology and Hilbert functions of local rings, Commutative algebra: Durham 1981 (Durham, 1981) London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 231–241. MR 693638
- Judith D. Sally and Wolmer V. Vasconcelos, Stable rings, J. Pure Appl. Algebra 4 (1974), 319–336. MR 409430, DOI 10.1016/0022-4049(74)90012-7
- Peter Schenzel, Castelnuovo’s index of regularity and reduction numbers, Topics in algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 201–208. MR 1171270
- Ngô Việt Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1–49. MR 846128, DOI 10.1017/s0027763000000416
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 415-422
- MSC: Primary 13A30; Secondary 13D45, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152984-0
- MathSciNet review: 1152984