Composition operators on analytic Lipschitz spaces
HTML articles powered by AMS MathViewer
- by Kevin M. Madigan
- Proc. Amer. Math. Soc. 119 (1993), 465-473
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152987-6
- PDF | Request permission
Abstract:
If $X$ is a Banach space of functions analytic on the disk and $\varphi :{\mathbf {D}} \to {\mathbf {D}}$ is analytic, one can define the composition operator ${C_\varphi }$ on $X$ by ${C_\varphi }f: = f \circ \varphi$. This paper discusses the boundedness and $w$-compactness of composition operators on the analytic Lipschitz spaces ${\mathcal {A}_\alpha },\;0 < \alpha < 1$.References
- Lars V. Ahlfors, Complex analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable. MR 510197
- P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32–60. MR 259579
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Raymond C. Roan, Composition operators on a space of Lipschitz functions, Rocky Mountain J. Math. 10 (1980), no. 2, 371–379. MR 575309, DOI 10.1216/RMJ-1980-10-2-371
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Joel H. Shapiro, Compact composition operators on spaces of boundary-regular holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 1, 49–57. MR 883400, DOI 10.1090/S0002-9939-1987-0883400-9
- Ke He Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143–1177. MR 1245472, DOI 10.1216/rmjm/1181072549 —, Distances and Banach spaces of holomorphic functions on complex domains, J. London Math. Soc. (to appear).
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 465-473
- MSC: Primary 47B38; Secondary 30H05, 46E15, 47B07
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152987-6
- MathSciNet review: 1152987