Decomposition of Peano derivatives
HTML articles powered by AMS MathViewer
- by Hajrudin Fejzić
- Proc. Amer. Math. Soc. 119 (1993), 599-609
- DOI: https://doi.org/10.1090/S0002-9939-1993-1155596-8
- PDF | Request permission
Abstract:
Let ${\Delta ’}$ be the class of all derivatives, and let $[{\Delta ’}]$ be the vector space generated by ${\Delta ’}$ and O’Malley’s class $B_1^{\ast }$. In [1] it is shown that every function in $[{\Delta ’}]$ is of the form ${g’} + h{k’}$, where $g,h$, and $k$ are differentiable, and that $f \in [{\Delta ’}]$ if and only if there is a sequence of derivatives ${v_n}$ and closed sets ${A_n}$ such that $\cup _{n = 1}^\infty {A_n} = {\mathbf {R}}$ and $f = {v_n}$ on ${A_n}$. The sequence of sets ${A_n}$ together with the corresponding functions ${v_n}$ is called a decomposition of $f$. In this paper we show that every Peano derivative belongs to $[{\Delta ’}]$. Also we show that for Peano derivatives the sets ${A_n}$ can be chosen to be perfect.References
- S. J. Agronsky, R. Biskner, A. M. Bruckner, and J. Mařík, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), no. 2, 493–500. MR 594421, DOI 10.1090/S0002-9947-1981-0594421-7
- Andrew M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448, DOI 10.1007/BFb0069821
- Ernest Corominas, Contribution à la théorie de la dérivation d’ordre supérieur, Bull. Soc. Math. France 81 (1953), 177–222 (French). MR 62794, DOI 10.24033/bsmf.1442
- H. William Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444–456. MR 62207, DOI 10.1090/S0002-9947-1954-0062207-1
- Richard J. O’Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), no. 2, 243–247. MR 0466446, DOI 10.1090/S0002-9939-1978-0466446-9 J. Mařik, On generalized derivatives, Real Anal. Exchange 3 (1977-78), 87-92.
- J. Mařík, Derivatives and closed sets, Acta Math. Hungar. 43 (1984), no. 1-2, 25–29. MR 731958, DOI 10.1007/BF01951320
- S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313–324. MR 285678, DOI 10.1112/plms/s3-22.2.313
- Clifford E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363–376. MR 176007, DOI 10.1090/S0002-9947-1965-0176007-2
- Clifford E. Weil, On approximate and Peano derivatives, Proc. Amer. Math. Soc. 20 (1969), 487–490. MR 233944, DOI 10.1090/S0002-9939-1969-0233944-7
- Clifford E. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527–536. MR 335703, DOI 10.1512/iumj.1973.23.23044
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 599-609
- MSC: Primary 26A24
- DOI: https://doi.org/10.1090/S0002-9939-1993-1155596-8
- MathSciNet review: 1155596