Block spaces on the unit sphere in $\textbf {R}^ n$
HTML articles powered by AMS MathViewer
- by Masahiro Keitoku and Enji Sato
- Proc. Amer. Math. Soc. 119 (1993), 453-455
- DOI: https://doi.org/10.1090/S0002-9939-1993-1156470-3
- PDF | Request permission
Abstract:
Let $B_q^{\mu ,\nu }$ be the block space on the unit sphere introduced by S. Lu. We discuss the relation between $B_q^{\mu ,\nu }$ and the ${L^p}$-space on the unit sphere. Then we give the characterization of $B_q^{\mu ,\nu }$ and a simple proof of Theorem (12.11)(iii) of Spaces generated by blocks (Beijing Normal University Math. Ser., 1989).References
- Lung-Kee Chen, On a singular integral, Studia Math. 85 (1986), no. 1, 61–72 (1987). MR 879417, DOI 10.4064/sm-85-1-61-72 S. Lu, M. H. Taibleson, and G. Weiss, Spaces generated by blocks, Beijing Normal Univ. Math. Ser., 1989.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 453-455
- MSC: Primary 42B20; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1156470-3
- MathSciNet review: 1156470