An asymptotic stability and a uniform asymptotic stability for functional-differential equations
HTML articles powered by AMS MathViewer
- by Younhee Ko
- Proc. Amer. Math. Soc. 119 (1993), 535-545
- DOI: https://doi.org/10.1090/S0002-9939-1993-1169036-6
- PDF | Request permission
Abstract:
We consider a system of functional differential equation ${x’}(t) = F(t,{x_t})$ and obtain conditions on a Liapunov functional to ensure the asymptotic stability and the uniform asymptotic stability of the zero solution.References
- T. A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), no. 2, 195–199. MR 481371, DOI 10.1090/S0002-9939-1978-0481371-5
- Theodore Allen Burton, Volterra integral and differential equations, Mathematics in Science and Engineering, vol. 167, Academic Press, Inc., Orlando, FL, 1983. MR 715428
- T. A. Burton, Stability and periodic solutions of ordinary and functional-differential equations, Mathematics in Science and Engineering, vol. 178, Academic Press, Inc., Orlando, FL, 1985. MR 837654
- Theodore Burton and László Hatvani, Stability theorems for nonautonomous functional-differential equations by Liapunov functionals, Tohoku Math. J. (2) 41 (1989), no. 1, 65–104. MR 985304, DOI 10.2748/tmj/1178227868
- Rodney D. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal. 10 (1962), 401–426. MR 141863, DOI 10.1007/BF00281203
- Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. MR 0508721, DOI 10.1007/978-1-4612-9892-2
- V. Lakshmikantham and Xinzhi Liu, On asymptotic stability for nonautonomous differential systems, Nonlinear Anal. 13 (1989), no. 10, 1181–1189. MR 1020726, DOI 10.1016/0362-546X(89)90006-0
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- L. Z. Wen, On the uniform asymptotic stability in functional-differential equations, Proc. Amer. Math. Soc. 85 (1982), no. 4, 533–538. MR 660599, DOI 10.1090/S0002-9939-1982-0660599-6
- Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, vol. 9, Mathematical Society of Japan, Tokyo, 1966. MR 0208086
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 535-545
- MSC: Primary 34K20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1169036-6
- MathSciNet review: 1169036