Stabilization of solutions of weakly singular quenching problems
Authors:
Marek Fila, Howard A. Levine and Juan L. Vázquez
Journal:
Proc. Amer. Math. Soc. 119 (1993), 555559
MSC:
Primary 35K60; Secondary 35B65, 35D05
DOI:
https://doi.org/10.1090/S0002993919931174490X
MathSciNet review:
1174490
Fulltext PDF Free Access
Abstract  References  Similar Articles  Additional Information
Abstract: In this paper we prove that if $0 < \beta < 1,\;D \subset {R^N}$ is bounded, and $\lambda > 0$, then every element of the $\omega$limit set of weak solutions of \[ \begin {array}{*{20}{c}} {{u_t}  \Delta u + \lambda {u^{  \beta }}{\chi _{u > 0}} = 0\quad {\text {in}}\;D \times [0,\infty ),} \\ {u = \left \{ \begin {gathered} 1\qquad \quad {\text {on}}\;\partial D \times (0,\infty ), \hfill \\ {u_0} > 0\quad {\text {on}}\;\bar D \times \{ 0\} \hfill \\ \end {gathered} \right .} \\ \end {array} \] is a weak stationary solution of this problem. A consequence of this is that if $D$ is a ball, $\lambda$ is sufficiently small, and ${u_0}$ is a radial, then the set $\{ (x,t)u = 0\}$ is a bounded subset of $D \times [0,\infty )$.

R. Aris, The mathematical theory of diffusion and reaction, Clarendon Press, Oxford, 1975.
 Catherine Bandle and ClaudeMichel Brauner, Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk, 1986) Boole Press Conf. Ser., vol. 8, Boole, Dún Laoghaire, 1986, pp. 7–14. MR 926693
 C.M. Brauner and B. Nicolaenko, On nonlinear eigenvalue problems which extend into free boundaries problems, Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978) Lecture Notes in Math., vol. 782, Springer, BerlinNew York, 1980, pp. 61–100. MR 572251
 Keng Deng and Howard A. Levine, On the blow up of $u_t$ at quenching, Proc. Amer. Math. Soc. 106 (1989), no. 4, 1049–1056. MR 969520, DOI https://doi.org/10.1090/S00029939198909695200
 J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I, Research Notes in Mathematics, vol. 106, Pitman (Advanced Publishing Program), Boston, MA, 1985. Elliptic equations. MR 853732
 Marek Fila, Josephus Hulshof, and Pavol Quittner, The quenching problem on the $N$dimensional ball, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 183–196. MR 1167839, DOI https://doi.org/10.1007/9781461203933_14
 Marek Fila and Bernhard Kawohl, Asymptotic analysis of quenching problems, Rocky Mountain J. Math. 22 (1992), no. 2, 563–577. MR 1180720, DOI https://doi.org/10.1216/rmjm/1181072749
 D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269. MR 340701, DOI https://doi.org/10.1007/BF00250508
 Michel Langlais and Daniel Phillips, Stabilization of solutions of nonlinear and degenerate evolution equations, Nonlinear Anal. 9 (1985), no. 4, 321–333. MR 783581, DOI https://doi.org/10.1016/0362546X%2885%29900574
 Howard A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl. (4) 155 (1989), 243–260. MR 1042837, DOI https://doi.org/10.1007/BF01765943
 Daniel Phillips, Existence of solutions of quenching problems, Appl. Anal. 24 (1987), no. 4, 253–264. MR 907341, DOI https://doi.org/10.1080/00036818708839668
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K60, 35B65, 35D05
Retrieve articles in all journals with MSC: 35K60, 35B65, 35D05
Additional Information
Article copyright:
© Copyright 1993
American Mathematical Society