Stabilization of solutions of weakly singular quenching problems
Authors:
Marek Fila, Howard A. Levine and Juan L. Vázquez
Journal:
Proc. Amer. Math. Soc. 119 (1993), 555-559
MSC:
Primary 35K60; Secondary 35B65, 35D05
DOI:
https://doi.org/10.1090/S0002-9939-1993-1174490-X
MathSciNet review:
1174490
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove that if is bounded, and
, then every element of the
-limit set of weak solutions of






- [A] R. Aris, The mathematical theory of diffusion and reaction, Clarendon Press, Oxford, 1975.
- [BB] Catherine Bandle and Claude-Michel Brauner, Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk, 1986) Boole Press Conf. Ser., vol. 8, Boole, Dún Laoghaire, 1986, pp. 7–14. MR 926693
- [BN] C.-M. Brauner and B. Nicolaenko, On nonlinear eigenvalue problems which extend into free boundaries problems, Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978) Lecture Notes in Math., vol. 782, Springer, Berlin-New York, 1980, pp. 61–100. MR 572251
- [DL] Keng Deng and Howard A. Levine, On the blow up of 𝑢_{𝑡} at quenching, Proc. Amer. Math. Soc. 106 (1989), no. 4, 1049–1056. MR 969520, https://doi.org/10.1090/S0002-9939-1989-0969520-0
- [D] J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I, Research Notes in Mathematics, vol. 106, Pitman (Advanced Publishing Program), Boston, MA, 1985. Elliptic equations. MR 853732
- [FHQ] Marek Fila, Josephus Hulshof, and Pavol Quittner, The quenching problem on the 𝑁-dimensional ball, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989) Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 183–196. MR 1167839, https://doi.org/10.1007/978-1-4612-0393-3_14
- [FK] Marek Fila and Bernhard Kawohl, Asymptotic analysis of quenching problems, Rocky Mountain J. Math. 22 (1992), no. 2, 563–577. MR 1180720, https://doi.org/10.1216/rmjm/1181072749
- [JL] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269. MR 340701, https://doi.org/10.1007/BF00250508
- [LP] Michel Langlais and Daniel Phillips, Stabilization of solutions of nonlinear and degenerate evolution equations, Nonlinear Anal. 9 (1985), no. 4, 321–333. MR 783581, https://doi.org/10.1016/0362-546X(85)90057-4
- [L] Howard A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl. (4) 155 (1989), 243–260. MR 1042837, https://doi.org/10.1007/BF01765943
- [Ph] Daniel Phillips, Existence of solutions of quenching problems, Appl. Anal. 24 (1987), no. 4, 253–264. MR 907341, https://doi.org/10.1080/00036818708839668
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K60, 35B65, 35D05
Retrieve articles in all journals with MSC: 35K60, 35B65, 35D05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1174490-X
Article copyright:
© Copyright 1993
American Mathematical Society