Asymptotic behavior of solutions of Poincaré difference equations
HTML articles powered by AMS MathViewer
- by William F. Trench
- Proc. Amer. Math. Soc. 119 (1993), 431-438
- DOI: https://doi.org/10.1090/S0002-9939-1993-1184088-5
- PDF | Request permission
Abstract:
It is shown that if the zeros ${\lambda _1},{\lambda _2}, \ldots ,{\lambda _n}$ of the polynomial \[ q(\lambda ) = {\lambda ^n} + {a_1}{\lambda ^{n - 1}} + \cdots + {a_n}\] are distinct and $r$ is an integer in $\{ 1,2, \ldots ,n\}$ such that $|{\lambda _s}| \ne |{\lambda _r}|$ if $s \ne r$, then the Poincaré difference equation \[ y(n + m) + ({a_1} + {p_1}(m))y(n + m - 1) + \cdots + ({a_n} + {p_n}(m))y(m) = 0\] has a solution ${y_r}$ such that (A) ${y_r}(m) = \lambda _r^m(1 + o(1))$ as $m \to \infty$, provided that the sums $\sum \nolimits _{j = m}^\infty {{p_i}(j)\;(1 \leqslant i \leqslant n)}$ converge sufficiently rapidly. Our results improve over previous results in that these series may converge conditionally, and we give sharper estimates of the $o(1)$ terms in (A).References
- Charles V. Coffman, Asymptotic behavior of solutions of ordinary difference equations, Trans. Amer. Math. Soc. 110 (1964), 22–51. MR 156122, DOI 10.1090/S0002-9947-1964-0156122-9
- M. A. Evgrafov, On the asymptotic behaviour of solutions of simultaneous linear equations, Dokl. Akad. Nauk SSSR 121 (1958), 407–410 (Russian). MR 0101996
- A. O. Gel′fond and I. M. Kubenskaya, On Perron’s theorem in the theory of difference equations, Izv. Akad. Nauk SSSR Ser. Mat. 17 (1953), 83–86 (Russian). MR 0058110 O. Perron, Über Stabilität und asymptotisches Verhalten der Lösungen eines Systemsendlicher Differenzengleichungen, J. Reine Angew. Math. 161 (1929), 41-64.
- H. Poincare, Sur les Equations Lineaires aux Differentielles Ordinaires et aux Differences Finies, Amer. J. Math. 7 (1885), no. 3, 203–258 (French). MR 1505385, DOI 10.2307/2369270
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 431-438
- MSC: Primary 39A10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1184088-5
- MathSciNet review: 1184088