Fourier decompositions with positive coefficients in compact Gel′fand pairs
HTML articles powered by AMS MathViewer
- by Brian E. Blank
- Proc. Amer. Math. Soc. 119 (1993), 427-430
- DOI: https://doi.org/10.1090/S0002-9939-1993-1195713-7
- PDF | Request permission
Abstract:
For $G$ a compact separable Hausdorff topological group and for $1 < p \leqslant 2$ the finiteness of the Hausdorff-Young sequence operator is established for functions in ${L^1}(G)$ with positive Fourier decompositions and which are $p$th-power integrable in a neighborhood of the identity. A similar result is established in the context of compact Gelfand pairs.References
- J. Marshall Ash, Michael Rains, and Stephen Vági, Fourier series with positive coefficients, Proc. Amer. Math. Soc. 101 (1987), no. 2, 392–393. MR 902561, DOI 10.1090/S0002-9939-1987-0902561-6
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Takeshi Kawazoe and Hiroshi Miyazaki, Fourier series with nonnegative coefficients on compact semisimple Lie groups, Tokyo J. Math. 12 (1989), no. 1, 241–246. MR 1001745, DOI 10.3836/tjm/1270133561
- Harold S. Shapiro, Majorant problems for Fourier coefficients, Quart. J. Math. Oxford Ser. (2) 26 (1975), 9–18. MR 372515, DOI 10.1093/qmath/26.1.9
- Stephen Wainger, A problem of Wiener and the failure of a principle for Fourier series with positive coefficients, Proc. Amer. Math. Soc. 20 (1969), 16–18. MR 236397, DOI 10.1090/S0002-9939-1969-0236397-8
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 427-430
- MSC: Primary 43A30; Secondary 43A15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1195713-7
- MathSciNet review: 1195713