An extension of norm inequalities for integral operators on cones when $0<p<1$
HTML articles powered by AMS MathViewer
- by M. V. Siadat and K. Zhou
- Proc. Amer. Math. Soc. 119 (1993), 817-821
- DOI: https://doi.org/10.1090/S0002-9939-1993-1149978-8
- PDF | Request permission
Abstract:
We extend our recent results concerning norm inequalities on cones to include the case when $0 < p < 1$.References
- Max Koecher, Positivitätsbereiche im $R^n$, Amer. J. Math. 79 (1957), 575–596 (German). MR 90771, DOI 10.2307/2372563
- Tatjana Ostrogorski, Analogues of Hardy’s inequality in $\textbf {R}^n$, Studia Math. 88 (1988), no. 3, 209–219. MR 932010, DOI 10.4064/sm-88-3-209-219
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683, DOI 10.1515/9781400873173
- Oscar S. Rothaus, Domains of positivity, Abh. Math. Sem. Univ. Hamburg 24 (1960), 189–235. MR 121810, DOI 10.1007/BF02942030
- Yoram Sagher, M. Vali Siadat, and Ke Cheng Zhou, Norm inequalities for integral operators on cones, Colloq. Math. 60/61 (1990), no. 1, 77–92. MR 1096361, DOI 10.4064/cm-60-61-1-77-92
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 817-821
- MSC: Primary 47G10; Secondary 26D10, 44A05, 47A30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1149978-8
- MathSciNet review: 1149978