Towers are universally measure zero and always of first category
HTML articles powered by AMS MathViewer
- by Szymon Plewik
- Proc. Amer. Math. Soc. 119 (1993), 865-868
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152287-4
- PDF | Request permission
Abstract:
We improve a few known results about universally measure zero and always of first category sets. Our main tool is the fact that any tower with respect to a Borel relation is such a set.References
- Jacek Cichoń, On Banach numbers, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 11-12, 531–534 (1982) (English, with Russian summary). MR 654210 D. Fremlin, Cichon’s diagram, Seminaire Initiation à l’Analyse (G. Choquet, M. Rogalski, J. Saint-Raymond, eds.), no. 23, Univ. Pierre et Marie Curie, Paris, 1983/84.
- Peter Lars Dordal, Towers in $[\omega ]^\omega$ and ${}^\omega \omega$, Ann. Pure Appl. Logic 45 (1989), no. 3, 247–276. MR 1032832, DOI 10.1016/0168-0072(89)90038-9
- Edward Grzegorek, Solution of a problem of Banach on $\sigma$-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 1-2, 7–10 (1981) (English, with Russian summary). MR 616191 F. Hausdorff, Summen von ${\aleph _1}$ mengen, Fund. Math. 26 (1936), 241-255.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416 N. Lusin, Sur l’existence d’un ensemble non denombrable qui est de première catégorie dans tout ensemble parfait, Fund. Math. 2 (1921), 55-157.
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709 W. Sierpiński and E. Szpilrajn, Remarque sur le problème de la mesure$^{1}$, Fund. Math. 26 (1936), 256-261.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 865-868
- MSC: Primary 04A15; Secondary 28A05, 54H05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152287-4
- MathSciNet review: 1152287