Kmax and stable rank of enveloping algebras
HTML articles powered by AMS MathViewer
- by George Tintera
- Proc. Amer. Math. Soc. 119 (1993), 691-696
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152293-X
- PDF | Request permission
Abstract:
We calculate upper bounds for the stable rank of enveloping algebras of all finite-dimensional nonabelian nilpotent and some solvable Lie algebras using Kmax and Stafford’s generalization of Bass’s Stable Range Theorem. We find that the stable rank of these algebras is less than their commutative counterparts, polynomial rings.References
- H. Bass, $K$-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60. MR 174604
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Rudolf Rentschler and Pierre Gabriel, Sur la dimension des anneaux et ensembles ordonnés, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A712–A715 (French). MR 224644
- Thomas H. Lenagan, Krull dimension and invertible ideals in Noetherian rings, Proc. Edinburgh Math. Soc. (2) 20 (1976), no. 2, 81–86. MR 419520, DOI 10.1017/S0013091500010580
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- J. T. Stafford, On the stable range of right Noetherian rings, Bull. London Math. Soc. 13 (1981), no. 1, 39–41. MR 599638, DOI 10.1112/blms/13.1.39
- J. T. Stafford, Absolute stable rank and quadratic forms over noncommutative rings, $K$-Theory 4 (1990), no. 2, 121–130. MR 1081655, DOI 10.1007/BF00533152 A. Suslin, Reciprocity laws and the stable rank of polynomial rings, Math. USSR Izv. 15 (1980), 589-623.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 691-696
- MSC: Primary 19B10; Secondary 17B35
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152293-X
- MathSciNet review: 1152293