Taylor exactness and Kato’s jump
HTML articles powered by AMS MathViewer
- by Robin Harte
- Proc. Amer. Math. Soc. 119 (1993), 793-801
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152982-7
- PDF | Request permission
Abstract:
The middle exactness condition of Joseph Taylor is related to the zero-jump condition of Tosio Kato, and some "commutative" Fredholm theory explored.References
- Constantin Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), no. 3, 279–294. MR 803833, DOI 10.1307/mmj/1029003239
- S. R. Caradus, Generalized inverses and operator theory, Queen’s Papers in Pure and Applied Mathematics, vol. 50, Queen’s University, Kingston, Ont., 1978. MR 523736
- S. R. Caradus, Perturbation theory for generalized Fredholm operators. II, Proc. Amer. Math. Soc. 62 (1976), no. 1, 72–76 (1977). MR 435896, DOI 10.1090/S0002-9939-1977-0435896-8
- Raúl E. Curto, Applications of several complex variables to multiparameter spectral theory, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 25–90. MR 976843
- Manuel González, Null spaces and ranges of polynomials of operators, Publ. Mat. 32 (1988), no. 2, 167–170. MR 975895, DOI 10.5565/PUBLMAT_{3}2288_{0}4
- Manuel Gonzales and Robin Harte, The death of an index theorem, Proc. Amer. Math. Soc. 108 (1990), no. 1, 151–156. MR 1024261, DOI 10.1090/S0002-9939-1990-1024261-7
- R. E. Harte, Invertibility, singularity and Joseph L. Taylor, Proc. Roy. Irish Acad. Sect. A 81 (1981), no. 1, 71–79. MR 635581
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322. MR 107819, DOI 10.1007/BF02790238
- Mostafa Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), no. 2, 159–175 (French). MR 901662, DOI 10.1017/S0017089500006807 —, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
- M. Zuhair Nashed, Perturbations and approximations for generalized inverses and linear operator equations, Generalized inverses and applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973) Publ. Math. Res. Center Univ. Wisconsin, No. 32, Academic Press, New York, 1976, pp. 325–396. MR 0500249
- M. Ó Searcóid and T. T. West, Continuity of the generalized kernel and range of semi-Fredholm operators, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 3, 513–522. MR 985688, DOI 10.1017/S0305004100077896
- Pierre Saphar, Contribution à l’étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363–384 (French). MR 187095, DOI 10.24033/bsmf.1612
- T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), no. 2, 137–146. MR 941708
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 793-801
- MSC: Primary 47A99; Secondary 47A13, 47B07
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152982-7
- MathSciNet review: 1152982