Measurability properties of sets of Vitali’s type
HTML articles powered by AMS MathViewer
- by Sławomir Solecki
- Proc. Amer. Math. Soc. 119 (1993), 897-902
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152992-X
- PDF | Request permission
Abstract:
Assume a group $G$ acts on a set. Given a subgroup $H$ of $G$, by an $H$-selector we mean a selector of the set of all orbits of $H$. We investigate measurability properties of $H$-selectors with respect to $G$-invariant measures.References
- J. Cichoń, A. B. Kharazishvili, and B. Wȩglorz, On sets of Vitali’s type, Proc. Amer. Math. Soc. 118 (1993), 1221-1228.
- Paul Erdős and R. Daniel Mauldin, The nonexistence of certain invariant measures, Proc. Amer. Math. Soc. 59 (1976), no. 2, 321–322. MR 412390, DOI 10.1090/S0002-9939-1976-0412390-0 A. B. Kharazishvili, On some types of invariant measures, Soviet Math. Dokl. 16 (1975), 681-684.
- A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962/63), 111–115. MR 142709, DOI 10.4064/fm-51-2-111-115
- Shizuo Kakutani and John C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space, Ann. of Math. (2) 52 (1950), 580–590. MR 37335, DOI 10.2307/1969435
- Sławomir Solecki, On sets nonmeasurable with respect to invariant measures, Proc. Amer. Math. Soc. 119 (1993), no. 1, 115–124. MR 1159177, DOI 10.1090/S0002-9939-1993-1159177-1 E. Szpilrajn (Marczewski), Sur l’extension de la mesure lebesguienne, Fund. Math. 25 (1935), 551-558. G. Vitali, Sul Problema delta Misura dei Gruppi di Punti di una Retta, Bologna, Italy, 1905.
- Bogdan Węglorz, Extensions of filters to Ulam filters, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 1, 11–14 (English, with Russian summary). MR 539325
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 897-902
- MSC: Primary 43A05; Secondary 28A99, 28D15, 43A85
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152992-X
- MathSciNet review: 1152992