The evolution operator approach to functional-differential equations with delay
HTML articles powered by AMS MathViewer
- by Wolfgang M. Ruess
- Proc. Amer. Math. Soc. 119 (1993), 783-791
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154248-8
- PDF | Request permission
Abstract:
The nonlinear nonautonomous functional differential equation $\dot x(t) \in B(t) x(t) + F(t,{x_t}),\;t \geqslant s, {x_s} = \varphi$, is considered. The representation of the solution to this equation via the associated evolution operator is extended from the single-valued case to the general case of multivalued operators $B(t)$.References
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843, DOI 10.1007/978-94-010-1537-0
- Dennis W. Brewer, A nonlinear semigroup for a functional differential equation, Trans. Amer. Math. Soc. 236 (1978), 173–191. MR 466838, DOI 10.1090/S0002-9947-1978-0466838-2
- Dennis W. Brewer, A nonlinear contraction semigroup for a functional differential equation, Volterra equations (Proc. Helsinki Sympos. Integral Equations, Otaniemi, 1978) Lecture Notes in Math., vol. 737, Springer, Berlin, 1979, pp. 35–44. MR 551026
- Dennis W. Brewer, The asymptotic stability of a nonlinear functional differential equation of infinite delay, Houston J. Math. 6 (1980), no. 3, 321–330. MR 597773
- Dennis W. Brewer, Locally Lipschitz continuous functional-differential equations and nonlinear semigroups, Illinois J. Math. 26 (1982), no. 3, 374–381. MR 658448
- Haïm Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Publ. Math. Res. Center Univ. Wisconsin, No. 27, Academic Press, New York, 1971, pp. 101–156. MR 0394323 —, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland Math. Studies, vol. 5, North-Holland, Amsterdam, 1973.
- M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94. MR 300166, DOI 10.1007/BF02761448
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094, DOI 10.1007/BFb0082079
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Grundlehren der Mathematischen Wissenschaften, vol. 219, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John. MR 0521262, DOI 10.1007/978-3-642-66165-5
- Janet Dyson and Rosanna Villella Bressan, Functional differential equations and non-linear evolution operators, Proc. Roy. Soc. Edinburgh Sect. A 75 (1975/76), no. 3, 223–234. MR 442402, DOI 10.1017/S0308210500017959
- Janet Dyson and Rosanna Villella Bressan, Some remarks on the asymptotic behavior of a nonautonomous, nonlinear functional differential equation, J. Differential Equations 25 (1977), no. 3, 275–287. MR 486903, DOI 10.1016/0022-0396(77)90045-6
- Janet Dyson and Rosanna Villella Bressan, Semigroups of translations associated with functional and functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/79), no. 3-4, 171–188. MR 532900, DOI 10.1017/S030821050001115X
- H. Flaschka and M. J. Leitman, On semigroups of nonlinear operators and the solution of the functional differential equation $\dot x(t)=F(x_{t})$, J. Math. Anal. Appl. 49 (1975), 649–658. MR 361959, DOI 10.1016/0022-247X(75)90204-8
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- Nicolae H. Pavel, Nonlinear evolution operators and semigroups, Lecture Notes in Mathematics, vol. 1260, Springer-Verlag, Berlin, 1987. Applications to partial differential equations. MR 900380, DOI 10.1007/BFb0077768
- Andrew T. Plant, Nonlinear semigroups of translations in Banach space generated by functional differential equations, J. Math. Anal. Appl. 60 (1977), no. 1, 67–74. MR 447745, DOI 10.1016/0022-247X(77)90048-8
- W. M. Ruess and W. H. Summers, Operator semigroups for functional-differential equations with delay, Trans. Amer. Math. Soc. 341 (1994), no. 2, 695–719. MR 1214785, DOI 10.1090/S0002-9947-1994-1214785-X
- C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395–418. MR 382808, DOI 10.1090/S0002-9947-1974-0382808-3
- G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1–12. MR 348224, DOI 10.1016/0022-247X(74)90277-7
- G. F. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225–230. MR 402237, DOI 10.1090/S0002-9939-1976-0402237-0
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 783-791
- MSC: Primary 34K30; Secondary 34G20, 47H15, 47N20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154248-8
- MathSciNet review: 1154248