Quasi-heredity of algebras and their factor algebras
HTML articles powered by AMS MathViewer
- by Chang Chang Xi
- Proc. Amer. Math. Soc. 119 (1993), 727-729
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154251-8
- PDF | Request permission
Abstract:
Let $A$ be a finite-dimensional algebra over an algebraically closed field and denote by $N$ the Jacobson radical of $A$. If there is an integer $i \geqslant 2$ such that $A/{N^i}$ is quasi-hereditary, then $A$ is quasi-hereditary.References
- Vlastimil Dlab and Claus Michael Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (1989), no. 2, 280–291. MR 987824
- Chang Chang Xi, The structure of Schur algebras $S_k(n,p)$ for $n\geq p$, Canad. J. Math. 44 (1992), no. 3, 665–672. MR 1176375, DOI 10.4153/CJM-1992-040-5
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 727-729
- MSC: Primary 16P10; Secondary 16E10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1154251-8
- MathSciNet review: 1154251