Zero entropy factors of topological flows
HTML articles powered by AMS MathViewer
- by F. Blanchard and Y. Lacroix
- Proc. Amer. Math. Soc. 119 (1993), 985-992
- DOI: https://doi.org/10.1090/S0002-9939-1993-1155593-2
- PDF | Request permission
Abstract:
The maximal zero entropy factor of a topological flow is defined using entropy pairs and explicitly given for some simple cartesian products. As a consequence, it is proved that only the trivial flow is disjoint from all flows whose maximal zero entropy factor is trivial.References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, DOI 10.1090/S0002-9947-1965-0175106-9
- F. Blanchard, Fully positive topological entropy and topological mixing, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 95–105. MR 1185082, DOI 10.1090/conm/135/1185082 —, A disjointness theorem involving topological entropy, preprint, 1991.
- Robert Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. 94 (1960), 258–271. MR 123635, DOI 10.1090/S0002-9947-1960-0123635-1
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 985-992
- MSC: Primary 54H20; Secondary 28D20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1155593-2
- MathSciNet review: 1155593