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R. E. STONG

(Communicated by Thomas G. Goodwillie)

In memory ofE. E. Floyd

Abstract. This paper determines the possible equivariant bordism classes of

involutions having fixed set a union of products of circles.

1. Introduction

Consider the involution on the projective plane RP2 defined by

T([xo, Xi, X2]) = [-xo, xi, x2].

The fixed point set of this involution consists of a point, [1,0,0], with trivial
normal bundle and a circle, Sx or RPX, given by the points with xo = 0, with

normal bundle the nontrivial line bundle c; over RPX.
Forming the product of m-copies of this example, one obtains an involution

on (RP2)m = RP2 x ■ ■ ■ x RP2 given by Tx-xT, for which the fixed point

set is the union of (™) copies of (RPx)k with normal bundle

fi ©&©•••©& © (2m - 2k) -> RPX x-x rpx

for 0 < k < m. Here (™) is the binomial coefficient, cj, is the line bundle

over the /th factor, and (RPX)° is interpreted as being a point.

In their book [2] Conner and Floyd proved that, up to bordism, (RP2, T)

is the only involution with fixed set the union of a point and a circle. (See [2,
(27.6)].) The purpose of this note is to establish the generalization:

Theorem. If (Mn , T) is an involution having fixed point set a union of copies

of (RPx)k, with 0 < k < n, then either (Af, T) bounds or n = 2m and
(Mn , T) is equivariantly cobordant to the involution ((RP2)m, T x ■■■ x T).

The author is indebted to the National Science Foundation for financial sup-

port during this work.

2. The proof

From [2, (28.1)], one has an exact sequence
n

0 - ^  ' @*n-j(BOj) ± SK,-l(RP°°) - 0,

_ 7=0
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which shows that the cobordism class of an involution is determined by the

bordism class of its fixed set and normal bundle. To study involutions fixing

unions of products of RPX 's one needs

Lemma. If n-i -> (RPx)k is a j-plane bundle over the k-fold product which is

nonbounding (in JVk(BOf)), then j > k and ((RPx)k, nJ) is bordant to the

bundle
£,©•••©&© (7-^-(TfP1)*.

Proof. The bordism class of a bundle is determined by its Stiefel-Whitney num-
bers, and since (RPx)k is parallelizable, the only Stiefel-Whitney numbers that

can possibly be nonzero are those of the form

wi{wh---wir[(RPx)k],

where Wj = Wj(n) and ix < i2 < ■ ■ ■ < ir,  ix + ■■■ + ir = k.   Further, if

x e H*((RPl)k; Z2), then x2 = 0, and one may suppose ix < i2 < ■■■ < i,.

From Wu's theorem [3]

c  s V^ (t-S- 1 +u\
Sqswt = 2^ I u ) Ws-uWt+u

and triviality of the action of the Steenrod algebra in H*((RPx)k ;Z2), one has

0 = Sq2"w2<,+ \b = W2a+\bW2a + W2a+\b+2a.

Thus, the only Stiefel-Whitney numbers to,-, • • • wir[(RPX)k] with ix-\-\-ir — k
which can be nonzero are those in which the i 's have no common powers of

2 in their dyadic expansion, and these are nonzero if and only if wk[(RPx)k]

is nonzero. If ((RPx)k, rjJ) is nonbounding, wk(nJ) ^ 0, so j > k and n is

bordant to £x © • • • © & © (j - k), which also has wk nonzero.   □

The proof of the theorem is now a very easy inductive argument. One con-
siders a class

a = ((RPx)k^, n"-kl)u• • • u((RPx)k', n"-k')

in YH^^BOn-k), where kx<k2<--- < kr and each bundle ((RPx)k, n"-k)

is nonbounding. One can suppose nn~k = £x © • • • © & © (n - 2k) with no loss,

and hence n>2kr.
The hypothesis for the induction on kr is that a is the fixed data of an

involution (Af" , T) if and only if n = 2kr and the /c, occurring are precisely

those for which (%) is nonzero mod 2.

The case kr = 0 is trivial. One is asking that a point with trivial «-plane

bundle be the fixed set of an involution (Af", T). This can only happen for

n = 0 with the trivial involution on a point, i.e., ((RP2)"1, T x •■■ x T) with

m = 0. (See [2, remark following (25.1)].) Now consider the class a and

suppose q is the fixed set of an involution (Mn , T). From [2, (26.4)], one has

a commutative diagram

0^(7?cv,)  —^ yvn-x(RP°°)
k=0

J©' |a
n-1

0^(y3O„_!_,) ^U yVn_2(RP°°)
k=0
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where 0 1 adds a trivial line bundle and A is the Smith homomorphism.

Clearly, if n > 2kr, then one has a = (0 l)n~2kra', where

a' = ((RPx)k>, n2kr'k,)U ■ • • U ((TU51)*', nk')

has the same sequence kx < ■■■ <kr as does a. Then

da' = An-2k'd(®l)n-2k'a' = A"-2k'da = A""2/c'0 = 0,

so a' is the fixed set of an involution on a manifold of dimension 2kr. If

n = 2kr, a' = a and nothing has been done so far. Say a' = F(N2kr, S).

Now consider fi = F((N2k', S) U ((RP2)k' ,Tx---xT)). This is the fixed

data of an involution with

fi = ((RPx)j> , n2k'-Jl)U ■ • • U ((RPX)J°, n2kr-j')

having js < kr since the dimension kr components of the fixed sets in (RP2)kr

and N2kr cancelled out. By the inductive hypothesis, this can only happen if

fi = 0, for the dimension of the involution exceeds 2js.

Thus a' - F((RP2)kr, Tx-xT) is the fixed set of the standard involution,

or kj occurs precisely when (kk[) is odd.

Now assume n > 2kr. Then

r3(01)a' = A2^-19a = O.

Thus (0 l)a' is the fixed set of an involution. However, [2, (24.2)] observes

that the real projective space bundle of (0 l)a' is cobordant to (RP2)kr, which

is not a boundary, while the projective space bundle of the fixed set of an

involution bounds [2, (24.1)]. This is a contradiction.

This completes the induction and the proof of the theorem.

3. Bundles over (RPx)k

The most direct approach to proving the theorem would start by finding the

possible Stiefel-Whitney classes for all vector bundles over (RPx)k . Unfortu-

nately, the classes turn out to be surprisingly complicated, and the argument

was chosen to bypass this point. It seems desirable to describe the classes.

Proposition. Let H*((RPx)k ; Z2) = Z2[ax, ... , ak]/(a2 = 0), where a, is the

l-dimensional class given by projection on the ith factor. There are vector bundles

over (RPx)k having Stiefel-Whitney classes

(1) 1+a/;
(2) 1 +ahah, ix < i2;

(3) 1 + ahahahau ,  ix < i2 < i3 < U',  and
(4) 1-r-a„a,2 •••a,g,  ix < i2 < ■ ■ ■ < i»,

and every bundle over (RPx)k has Stiefel-Whitney class a product T[(l+Xj) for

some subset of this set of classes.

Proof. To construct the given classes, let r = 1, 2, 4, or 8 and consider the

projectionn:(RPx)k -> (RPx)r corresponding to a,,, ... , air. Compose this

with a degree one map to the sphere Sr and pull back the /--plane bundle over

the sphere having w = I + or.
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Being given any vector bundle n over (RPx)k, one can choose a unique

sum Y^p of these bundles for which tu; (£)/>) = Wi(n) fori < 8. Then, for

e = n-z2p,
w(6) — l + w2s + higher terms

with s > 3.
If one considers the Thom space of 0 with Thorn class U, one has

SqrU = w2sU,    Sq'U = WiU = 0       for 1 < * < 2*.

From [1], there are secondary cohomology operations p2'~J, 0 < j < 2s, with

w2sU = SqrU = Y,Sqjpr'jU = ^Sq'iyv-jU)

= ̂ yy.jSqW = fey2,-ywj) U = 0
since Steenrod operations are trivial in (RPx)k. Thus, w2s(6) = 0 and so

w(6) = 1.   □

The most obvious vector bundles over (RPx)k are the line bundles, giving

Stiefel-Whitney classes 1 -l-x for every 1-dimensional class x . It is immediate

that
I + afi = (I + a + fi)(l + a)(l + fi),

so the classes of 2-plane bundles described above can be given by sums of line

bundles.
Surprisingly, the classes of the 4-plane and 8-plane bundles cannot be ex-

pressed as sums of line bundles. One has

(1 + a„ + • • • + ais) = (1 + a,,) ■ • • (1 + a/J \\(l + a,ua„),
u<t

as can readily be seen by induction on 5 , and so the classes of line bundles are

all obtained using only the first two types. Thus, sums of line bundles do not

give all Steiefel-Whitney classes.
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