Averages along uniformly distributed directions on a curve
HTML articles powered by AMS MathViewer
- by Jose Barrionuevo
- Proc. Amer. Math. Soc. 119 (1993), 823-827
- DOI: https://doi.org/10.1090/S0002-9939-1993-1172947-9
- PDF | Request permission
Abstract:
We obtain a sharp ${L^2}$ estimate for the maximal operator associated with uniformly distributed directions on a curve of finite type in ${{\mathbf {R}}^n}$.References
- Jose Barrionuevo, Estimates for some Kakeya-type maximal operators, Trans. Amer. Math. Soc. 335 (1993), no. 2, 667–682. MR 1150012, DOI 10.1090/S0002-9947-1993-1150012-9
- Antonio Córdoba, Geometric Fourier analysis, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, vii, 215–226 (English, with French summary). MR 688026
- A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. MR 466470, DOI 10.1073/pnas.75.3.1060 J. Stromberg, Maximal functions associated to uniformly distributed families of directions, Ann. of Math. (2) 108 (1978), 399-402.
- Stephen Wainger, Applications of Fourier transforms to averages over lower-dimensional sets, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 85–94. MR 545241
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 823-827
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1993-1172947-9
- MathSciNet review: 1172947