Symmetric behavior in functions
HTML articles powered by AMS MathViewer
- by Udayan B. Darji
- Proc. Amer. Math. Soc. 119 (1993), 915-923
- DOI: https://doi.org/10.1090/S0002-9939-1993-1172958-3
- PDF | Request permission
Abstract:
S. Marcus raised the following problem: Find necessary and sufficient conditions for a set to be the set of points of symmetric continuity of some function $f:R \to R$. We show that there is no such characterization of topological nature. We prove that given a zero-dimensional set $M \subseteq R$, there exists a function $f:R \to R$ whose set of points of symmetric continuity is topologically equivalent to $M$. Thus, there is no "upper bound" on the topological complexities of $M$. We also prove similar theorems about the set of points where a function may be symmetrically differentiable, symmetric, or smooth.References
- Udayan B. Darji, Symmetric functions, Lebesgue measurability, and the Baire property, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1151–1158. MR 1145943, DOI 10.1090/S0002-9939-1993-1145943-5
- P. Erdős and A. H. Stone, On the sum of two Borel sets, Proc. Amer. Math. Soc. 25 (1970), 304–306. MR 260958, DOI 10.1090/S0002-9939-1970-0260958-1
- P. D. Humke and M. Laczkovich, A historical note on the measurability properties of symmetrically continuous and symmetrically differentiable functions, Real Anal. Exchange 15 (1989/90), no. 2, 768–771. MR 1059438
- F. B. Jones, Measure and other properties of a Hamel basis, Bull. Amer. Math. Soc. 48 (1942), 472–481. MR 6555, DOI 10.1090/S0002-9904-1942-07710-X
- S. Marcus, Les ensembles $F_\sigma$ et la continuité symétrique, Acad. R. P. Romîne. Bul. Şti. Secţ. Şti. Mat. Fiz. 7 (1955), 871–886 (Romanian, with Russian and French summaries). MR 0076843
- Jan Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147. MR 173645, DOI 10.4064/fm-55-2-139-147
- J. v. Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), no. 1, 134–141 (German). MR 1512442, DOI 10.1007/BF01459089
- C. A. Rogers, A linear Borel set whose difference set is not a Borel set, Bull. London Math. Soc. 2 (1970), 41–42. MR 265541, DOI 10.1112/blms/2.1.41
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 915-923
- MSC: Primary 26A15; Secondary 26A24, 54C08
- DOI: https://doi.org/10.1090/S0002-9939-1993-1172958-3
- MathSciNet review: 1172958