Generalized Hadwiger numbers for symmetric ovals
HTML articles powered by AMS MathViewer
- by Valentin Boju and Louis Funar
- Proc. Amer. Math. Soc. 119 (1993), 931-934
- DOI: https://doi.org/10.1090/S0002-9939-1993-1176065-5
- PDF | Request permission
Abstract:
Some estimations for the "juxtaposition function" ${h_F}$ and an asymptotic formula for the function ${h_F}/{h_G}$, where $F,\;G$ are central symmetric convex bodies, are given. Hadwiger and Grünbaum gave for ${h_F}(1)$ the bounds ${n^2} + n \leqslant {h_F}(1) \leqslant {3^n} - 1$. Grünbaum conjectured (and proved for $n = 2$ in Pacific J. Math. 11 (1961), 215-219) that for every even $r$ between these bounds there exists in ${E^n}$ an oval $F$ such that ${h_F}(1) = r$. Lower bounds for ${h_F}$ could be derived in the same way as in Theorems 1 and 2 from a good estimate of packing numbers on a Minkowski sphere, that is, from solutions to a Tammes-type problem in a Banch space.References
- W. Blaschke, Kreis und Kugel, Veit, Berlin, 1916.
V. Boju, Fonctions de juxtaposition, Invariants, Proc. XIII Conf. Geom. Topology, Univ. Cluj-Napoca, 1982, pp. 36-37.
—, Courbures riemanniennes généralisées, Int. Conf. Geom. and Appl., Bulg. Acad. Sci., Sofia, 1986, pp. 47-48.
- V. G. Boltjansky and I. Ts. Gohberg, Results and problems in combinatorial geometry, Cambridge University Press, Cambridge, 1985. Translated from the Russian. MR 821465, DOI 10.1017/CBO9780511569258 L. Danzer, B. Grünbaum, and V. Klee, Helly’s theorem and its relatives, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, RI, 1963, pp. 101-180. S. Golab, Quelques problemes métriques de la géometrie de Minkowski, Trav. Acad. Mines Cracov. 6 (1932). (Polish and French)
- Helmut Groemer, Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren, Monatsh. Math. 65 (1961), 74–81 (German). MR 124819, DOI 10.1007/BF01322659
- Branko Grünbaum, On a conjecture of H. Hadwiger, Pacific J. Math. 11 (1961), 215–219. MR 138044
- Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270. MR 0156259
- B. Grünbaum, Self-circumference of convex sets, Colloq. Math. 13 (1964), 55–57. MR 172174
- H. Hadwiger, Über Treffanzahlen bei translationsgleichen Eikörpern, Arch. Math. 8 (1957), 212–213 (German). MR 91490, DOI 10.1007/BF01899995
- Detlef Laugwitz, Konvexe Mittelpunktsbereiche und normierte Räume, Math. Z. 61 (1954), 235–244 (German). MR 66667, DOI 10.1007/BF01181345
- Kurt Leichtweiss, Konvexe Mengen, Hochschultext [University Textbooks], Springer-Verlag, Berlin-New York, 1980 (German). MR 586235
- Yu. G. Rešetnyak, An extremal problem from the theory of convex curves, Uspehi Matem. Nauk (N.S.) 8 (1953), no. 6(58), 125–126 (Russian). MR 0061400 J. Schäffer, Inner girth of spheres, Math. Ann. 184 (1970), 169-171.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 931-934
- MSC: Primary 52C15; Secondary 52A10, 52C17
- DOI: https://doi.org/10.1090/S0002-9939-1993-1176065-5
- MathSciNet review: 1176065