ON APPROXIMATE ANTIGRADIENTS

XIAO-XIONG GAN AND KARL R. STROMBERG

Abstract. For $n \in \mathbb{N}$ and $I = [0, 1]$, let I^n be the unit cube and λ^n the Lebesgue measure in \mathbb{R}^n. It is proved that if $f : I^n \to \mathbb{R}^n$ and $F_0 : I^n \to \mathbb{R}$ are continuous and $\varepsilon > 0$, then there exist a continuous $F : I^n \to \mathbb{R}$ and an open set $W \subset (I^n)^o$ with $\lambda^n(W) = 1$ such that

(i) ∇F exists and is continuous on W,
(ii) $\|\nabla F(x) - f(x)\| < \varepsilon \quad \forall x \in W$, and
(iii) $|F(x) - F_0(x)| < \varepsilon \quad \forall x \in I^n$, where $\|y\| = (\sum_{j=1}^n y_j^2)^{1/2}$ $\forall y \in \mathbb{R}^n$.

0. Introduction and definitions

If $f \in C([0, 1])$ and $F(x) = \int_0^x f$ for $0 \leq x \leq 1$, then $F' = f$. A famous theorem of Lusin states that if $\phi : I \to \mathbb{R}$ is a measurable function, then there exists $F \in C([0, 1])$ such that $F' = \phi$ a.e. on $[0, 1]$ (see [1, p. 217]). However, if $f(x, y) = (0, x)$ for $(x, y) \in I^2$, then there is no $F : I^2 \to \mathbb{R}$ for which $\nabla F = f$, because $D_1 F = 0$ implies that F depends only on y. Thus, if $n > 1$ and $f \in C(I^n, \mathbb{R}^n)$, then f need not have an antigradient $F : \nabla F = f$.

Can we find some kind of approximate antigradient for f? More generally, if $f : I^n \to \mathbb{R}^n$ is only measurable, what can be said? We are going to give some answers to these questions.

Throughout this paper, we use some definitions listed below.

(0.1) Definitions. Let $m, n \in \mathbb{N}$ and a nonvoid set Ω be given.

(1) If $F : \Omega \to \mathbb{R}^m$ is a mapping, then for $1 \leq i \leq m$, define the ith coordinate function $F_i : \Omega \to \mathbb{R}$ of F by letting $F_i(t)$ be the ith coordinate of $F(t)$:

$$F(t) = (F_1(t), F_2(t), \ldots, F_m(t)), \quad t \in \Omega.$$

(2) If Ω is a topological space, then $C(\Omega, \mathbb{R}^m)$ denotes the family of all continuous mappings from Ω to \mathbb{R}^m. If $m = 1$, write $C(\Omega)$ for $C(\Omega, \mathbb{R})$. Similarly, if $\Omega \subset \mathbb{R}^n$, we denote by $\mathcal{M}(\Omega, \mathbb{R}^m)$ the set of all Lebesgue measurable mappings from Ω to \mathbb{R}^m and write $\mathcal{M}(\Omega)$ for $\mathcal{M}(\Omega, \mathbb{R})$.

(3) Let $\Omega \subset \mathbb{R}^n$ and let $f \in C(\Omega)$. If $\frac{\partial f}{\partial x_i}(x)$ exists at some $x \in \Omega^o$ (the
interior of Ω) $\forall 1 \leq j \leq n$, we define
\[
\nabla f(x) = \left(\frac{\partial}{\partial x_1} f(x), \frac{\partial}{\partial x_2} f(x), \ldots, \frac{\partial}{\partial x_n} f(x) \right),
\]
and call ∇f the gradient of the function f. We also write D_j for $\frac{\partial}{\partial x_j}$.

Conversely, let $f \in C(\Omega, \mathbb{R}^n)$. If there is $F \in C(\Omega)$ such that $\nabla F = f$, we call F an antigradient of f.

(4) We always denote by I^n the unit cube in \mathbb{R}^n. That is
\[
I^n = \prod_{k=1}^n [0, 1] = \{ x \in \mathbb{R}^n : 0 \leq x_k \leq 1, \ j = 1, 2, \ldots, n \}.
\]
Also, we always denote by λ^n the Lebesgue measure on \mathbb{R}^n.

(5) Let $\Omega \subset \mathbb{R}^n$ and $\phi = (\phi_1, \phi_2, \ldots, \phi_m) \in C(\Omega, \mathbb{R}^m)$. If $\varepsilon > 0$, then we say $\| (\phi_1, \phi_2, \ldots, \phi_m) \| < \varepsilon$ a.e. on Ω to mean that
\[
\lambda^n(\{ x \in \Omega : \| (\phi_1(x), \phi_2(x), \ldots, \phi_m(x)) \| \geq \varepsilon \}) = 0,
\]
where $\| y \| = (\sum_{j=1}^m y_j^2)^{1/2}$ if $y \in \mathbb{R}^m$.

(6) For any $F : \Omega \to \mathbb{R}$, we define the uniform norm of F by
\[
\| F \|_u = \sup \{ |F(x)| : x \in \Omega \}.
\]

(7) We reserve the letter ψ to denote Lebesgue’s singular function (see [2, p. 130] or [4, p. 113]). It is a continuous, nondecreasing function $\mathbb{R} \to [0, 1]$ with $\psi(0) = 0$ and $\psi(1) = 1$ which is constant on each component interval of $\mathbb{R} \setminus C$, where C is Cantor’s ternary set.

1. Approximation to antigradients

(1.1) Theorem. Let $n \in \mathbb{N}$, let $P \in C(I^n, \mathbb{R}^n)$, and let $\varepsilon > 0$. Then there exist a continuous $Q : I^n \to \mathbb{R}$ and an open $V \subset (I^n)^\circ$ with $\lambda^n(V) = 1$ such that

(i) ∇Q exists and is continuous on V, and

(ii) $\| \nabla Q(x) - P(x) \| < \varepsilon$ $\forall x \in V$,

where $\| y \| = (\sum_{j=1}^n y_j^2)^{1/2}$ $\forall y \in \mathbb{R}^n$.

Proof. If $n = 1$, define
\[
Q(x) = \int_0^x P(t) \, dt \quad (0 \leq x \leq 1)
\]
and take $V =]0, 1[= I^\circ$. Then $\nabla Q = Q' = P$ on V so the theorem is true if $n = 1$.

Suppose, as an induction hypothesis, that $n > 1$ and that the theorem is true if n is replaced with $n - 1$. The uniform continuity of P provides $\delta > 0$ such that
\[
(1) \quad u, v \in I^n, \quad \| u - v \| < \delta \Rightarrow \| P(u) - P(v) \| < \varepsilon/6n.
\]
Choose $N \in \mathbb{N}$ with $N\delta > 1$.

In this paragraph, let $k \in \{1, 2, \ldots, n\}$ be given and fixed. We have $P(x) = (P_1(x), P_2(x), \ldots, P_n(x))$ for $x \in I^n$, where $P_j \in C(I^n)$ ($1 \leq j \leq n$). For $r \in \{0, 1, \ldots, N\}$, we identify the slice
\[
S_r = \{ x \in I^n : x_k = r/N \} \]
with I^{n-1} in the obvious way. Thus we write

$$S^n_r = \{ x \in S_r : 0 < x_j < 1 \forall j \neq k \}.$$

For each such r, we apply our induction hypothesis to the restriction of P to S_r to obtain a continuous function $G_r : S_r \to \mathbb{R}$ and a set $V_r \subset S^n_r$ which is open in S_r such that

$$\lambda^{n-1}(V_r) = 1,$$

$$\frac{\partial G_r}{\partial x_j}$$

exists and is continuous on $V_r \forall j \neq k (1 \leq j \leq n)$, and

$$\left(\sum_{j=1, j \neq k}^{n} \left[\frac{\partial G_r}{\partial x_j}(x) - P_j(x) \right]^2 \right)^{1/2} < \frac{\varepsilon}{6n} \forall x \in V_r.$$

Next we construct a function Q_k on I^n which extends each G_r. For $x = (x_1, x_2, \ldots, x_n) \in I^n$, define $x' \in S_k$ by $(x'_j) = x_j$ if $j \neq k$ and $(x'_k) = r/N$. Let ψ be Lebesgue's singular function in terms of Cantor's ternary set C as in (0.1) (7), and define f_r on the slab

$$\{ x \in I^n : (r-1)/N \leq x_k \leq r/N \}$$

for $r = 1, 2, \ldots, N$ by the rule

$$f_r(x) = G_{r-1}(x'_{r-1}) + \int_{x_{r-1}}^{x_r} G_r(x') - G_{r-1}(x'_{r-1}) \cdot \psi(Nx_k - r + 1).$$

Since $\psi(0) = 0$ and $\psi(1) = 1$, we have

$$x \in S_{r-1} \Rightarrow x_k = (r - 1)/N \Rightarrow x'_{r-1} = x \Rightarrow f_r(x) = G_{r-1}(x),$$

and

$$x \in S_{r} \Rightarrow x_k = r/N \Rightarrow x' = x \Rightarrow f_r(x) = G_r(x).$$

Thus the formula

$$Q_k(x) = f_r(x) \quad \text{if } (r-1)/N \leq x_k \leq r/N$$

unambiguously defines the function $Q_k : I^n \to \mathbb{R}$. The continuity of the functions $x \to x'$, each G_r, and ψ shows that Q_k is continuous on I^n. Define

$$W_k = (I^n)^{\circ} \cap \left(\bigcap_{r=0}^{N} \{ x \in I^n : x_k \in V_r \} \right) \cap \left(\bigcup_{r=1}^{N} \{ x \in I^n : r - 1 \leq Nx_k \leq r, \ (Nx_k - r + 1) \notin C \} \right),$$

where C is Cantor's ternary set. Then W_k is an open subset of $(I^n)^{\circ}$ and $\lambda^n(W_k) = 1$. By (3), (4), and the properties of the functions G_r, we see that for $j \neq k$ the partial derivative $\frac{\partial Q_k}{\partial x_j}$ exists and is continuous on W_k. Since $\psi' = 0$ on $[0, 1] \setminus C$, we have

$$\frac{\partial Q_k}{\partial x_k}(x) = 0 \forall x \in W_k.$$

Thus ∇Q_k is continuous on W_k. Now let $x \in W_k$ with $r - 1 < Nx_k < r$. Then we have

$$\|x - x'\| < \|x'_{r-1} - x'\| = 1/N < \delta.$$
so we use (1)-(4) and the fact that $0 \leq \psi \leq 1$ to see that $j \neq k$ $(1 \leq j \leq n) \Rightarrow$

$$\left| \frac{\partial Q_k}{\partial x_j}(x) - \frac{\partial G_{r-1}}{\partial x_j}(x^{r-1}) \right| = \left| \frac{\partial f_r}{\partial x_j}(x) - \frac{\partial G_{r-1}}{\partial x_j}(x^{r-1}) \right|$$

$$= \left| \left[\frac{\partial G_r}{\partial x_j}(x^r) - \frac{\partial G_{r-1}}{\partial x_j}(x^{r-1}) \right] \cdot \psi(Nx_k - r + 1) \right|$$

$$\leq \left| \frac{\partial G_r}{\partial x_j}(x^r) - P_j(x^r) \right| + \left| P_j(x^r) - P_j(x^{r-1}) \right|$$

$$+ \left| P_j(x^{r-1}) - \frac{\partial G_{r-1}}{\partial x_j}(x^{r-1}) \right|$$

$$< \frac{\varepsilon}{6n} + \frac{\varepsilon}{6n} + \frac{\varepsilon}{2n} = \varepsilon,$$

and

$$\left| \frac{\partial G_{r-1}}{\partial x_j}(x^{r-1}) - P_j(x) \right| \leq \left| \frac{\partial G_{r-1}}{\partial x_j}(x^{r-1}) - P_j(x^{r-1}) \right| + \left| P_j(x^{r-1}) - P_j(x) \right|$$

$$< \frac{\varepsilon}{6n} + \frac{\varepsilon}{6n} < \frac{\varepsilon}{2n}.$$

This shows that

$$(6) \left| \frac{\partial Q_k}{\partial x_j}(x) - P_j(x) \right| < \frac{\varepsilon}{n} \text{ if } x \in W_k \text{ and } j \neq k \ (1 \leq j \leq n).$$

Define $P^k : I^n \to \mathbb{R}^n$ by

$$P^k(x) = (P^k_1(x), P^k_2(x), \ldots, P^k_n(x)),$$

where $P^k_j = P_j$ if $j \neq k$ and $P^k_k = 0$. Then (5) and (6) yield that $x \in W_k \Rightarrow$

$$\|\nabla Q_k(x) - P^k(x)\| = \left(\sum_{j=1, j \neq k}^n \left| \frac{\partial Q_k}{\partial x_j}(x) - P_j(x) \right|^2 \right)^{1/2}$$

$$\leq \left((n-1) \cdot \left(\frac{\varepsilon}{n} \right)^2 \right)^{1/2} \leq \frac{n-1}{n} \varepsilon .$$

Thus we have constructed Q_k and W_k for each $k \in \{1, 2, \ldots, n\}$. Finally, notice that $P = \frac{1}{n-1} \sum_{k=1}^n P^k$ and define

$$V = \bigcap_{k=1}^n W_k \text{ and } Q = \frac{1}{n-1} \sum_{k=1}^n Q_k .$$

Then V is an open subset of $(I^n)^\circ$, $\lambda^n(V) = 1$, $Q \in C(I^n)$, and

(i) ∇Q is defined and continuous on V.

Also, (7) yields $x \in V \Rightarrow$

$$\|\nabla Q(x) - P(x)\| \leq \frac{1}{n-1} \sum_{k=1}^n \|\nabla Q_k(x) - P^k(x)\| < \frac{1}{n-1} \sum_{k=1}^n \frac{n-1}{n} \varepsilon = \varepsilon .$$

This is (ii). We have completed the proof. \square
The next theorem tells us what can be done if the mapping \(P \) in the above theorem is only measurable.

Theorem. Let \(n \in \mathbb{N} \) and let \(\phi \in \mathcal{M}(I^n, \mathbb{R}^n) \). Then there exists a sequence \(\{Q_k\}_{k=1}^\infty \subset C(I^n) \) such that

(i) \(\nabla Q_k \) exists and is continuous on some open set \(V_k \subset (I^n)^\circ \) with \(\lambda^n(V_k) = 1 \) \(\forall k \in \mathbb{N} \), and

(ii) \(\lim_{k \to \infty} \nabla Q_k(x) = \phi(x) \) for almost every \(x \in \bigcap_{k=1}^\infty V_k \).

Proof. Let \(\phi = (\phi_1, \phi_2, \ldots, \phi_n) \) as we mentioned in (0.1).

By Luzin's theorem, for each \(k \in \mathbb{N} \) and \(i \in \{1, 2, \ldots, n\} \) there exist an open set \(E_{k,i} \subset I^n \) with \(\lambda^n(E_{k,i}) < 2^{-k}/n \) and a function \(f_{k,i} \in C(I^n) \) such that

\[
f_{k,i}(x) = \phi_i(x) \quad \forall x \in I^n \setminus E_{k,i}. \]

Let \(E_k = \bigcup_{i=1}^n E_{k,i} \). Then \(\lambda^n(E_k) < 2^{-k} \) and

\[
f_{k,i}(x) = \phi_i(x) \quad \forall x \in I^n \setminus E_k, \quad 1 \leq i \leq n. \]

Take \(f_k = (f_{k,1}, f_{k,2}, \ldots, f_{k,n}) \). Then \(f_k \in C(I^n, \mathbb{R}^n) \) and

(1) \(f_k(x) = \phi(x) \quad \forall x \in I^n \setminus E_k \) for each \(k \in \mathbb{N} \).

Theorem (1.1) says that, for each \(k \in \mathbb{N} \), there exist a \(Q_k \in C(I^n) \) and an open set \(V_k \subset (I^n)^\circ \) with \(\lambda^n(V_k) = 1 \) such that \(\nabla Q_k \) exists and is continuous on \(V_k \) and

(2) \(\|\nabla Q_k(x) - f_k(x)\| < 2^{-k} \quad \forall x \in V_k. \)

Define \(E = \bigcap_{r=1}^\infty \bigcup_{k=r}^\infty E_k \) and \(V = \bigcap_{k=1}^\infty V_k \). For each \(r \in \mathbb{N} \), we have

\[
\lambda^n(E) \leq \lambda^n \left(\bigcup_{k=r}^\infty E_k \right) \leq \sum_{k=r}^\infty \lambda^n(E_k) \leq 2^{-r+1},
\]

so \(\lambda^n(E) = 0 \). Obviously \(\lambda^n(V) = 1 \).

Now let \(x \in V \setminus E \) be given. Then

\[
x \in \bigcap_{k=r_x}^\infty (V \setminus E_k)
\]

for some \(r_x \in \mathbb{N} \). Thus

\[
f_{k,i}(x) = \phi_i(x) \quad \forall k \geq r_x, \quad 1 \leq i \leq n,
\]

and by (2) we have

\[
\|\nabla Q_k(x) - f_k(x)\| < 2^{-k} \quad \forall k \geq r_x.
\]

Thus (1) yields

\[
\|\nabla Q_k(x) - \phi(x)\| < 2^{-k} \quad \forall k \geq r_x.
\]

Hence we have

\[
\lim_{k \to \infty} \nabla Q_k(x) = \phi(x).
\]

Since \(x \in V \setminus E \) was arbitrary and \(\lambda^n(V \setminus E) = 1 \), we are done. \(\square \)

As a consequence of (1.2), we obtain an interesting dense subspace of the \(F \)-space \(\mathcal{M}(I^n, \mathbb{R}^n) \) with its metric of coordinatewise convergence in measure.
1206 X.-X. Gan and K. R. Stromberg

(1.3) **Corollary.** For \(f = (f_1, f_2, \ldots, f_n) \) and \(g = (g_1, g_2, \ldots, g_n) \) in \(\mathcal{M}(I^n, \mathbb{R}^n) \) put

\[
\rho(f, g) = \max_{1 \leq i \leq n} \frac{1}{\int_{I^n} 1 + |f_j - g_j|} \ d\lambda^n.
\]

Then \(\rho \) is a complete invariant metric for \(\mathcal{M}(I^n, \mathbb{R}^n) \) and the linear subspace \(\{VF : F \in C(I^n) \text{ and } \nabla F \text{ exists and is continuous on an open set } V \subset (I^n)^{o} \} \) is dense in this space.

Proof. The completeness of \(\rho \) is immediate from the well-known special case \(n = 1 \) in which \(\rho \)-convergence is equivalent to convergence in measure (see [3, p. 93, Theorem E] for completeness). Since a.e. convergence on a finite measure space implies convergence in measure (see [4, (11.31)]), we need only apply (1.2). \(\square \)

2. **Density in \(C(I^n) \) of approximate antigradients**

In this section we present our main theorem as stated in the abstract above. It improves Theorem (1.1) in that it shows that, for a given \(P \) and \(\varepsilon \), the set of \(Q \)'s that satisfy the conclusion of (1.1) is dense in \(C(I^n) \). We need the results of this section for our work on universal primitives that is in preparation.

We begin with three lemmas.

(2.1) **Lemma.** Let \(n \in \mathbb{N} \) be given and let \(\{0, 1\}^n = \{ u \in \mathbb{R}^n : u_j \in \{0, 1\}, \ j = 1, 2, \ldots, n \} \). Suppose that \(y_u \in \mathbb{R} \) is given \(\forall u \in \{0, 1\}^n \), and let \(m \) be the minimum and \(M \) the maximum of \(\{y_u : u \in \{0, 1\}^n\} \). Then there exist a function \(f \in C(I^n) \) and an open set \(V \subset (I^n)^{o} \) with \(\lambda^n(V) = 1 \) such that

(i) \(\nabla f(x) = 0 \ \forall x \in V \),
(ii) \(f(u) = y_u \ \forall u \in \{0, 1\}^n \), and
(iii) \(m \leq f(x) \leq M \ \forall x \in I^n \).

Proof. If \(n = 1 \), let \(f \) be defined by

\[
f(x) = y_0 + (y_1 - y_0) \cdot \psi(x) \ \forall x \in I = [0, 1],
\]

and take \(V = I \setminus C \), where \(\psi \) is Lebesgue's singular function and \(C \) is Cantor's ternary set. Then (i)–(iii) are obvious.

Suppose, as an induction hypothesis, that \(n > 1 \) and the theorem is true if \(n \) is replaced with \(n - 1 \).

For \(l \in \{0, 1\} \), we identify the slice

\[
S_l = \{ x \in I^n : x_n = l \}
\]

with \(I^{n-1} \) in the obvious way and write

\[
S_l^o = \{ x \in S_l : 0 < x_j < 1, \ 1 \leq j \leq n - 1 \},
\]

\[
A_l = \{ u \in \{0, 1\}^n : u_n = l \}.
\]

By the induction hypothesis, we obtain an \(f_l \in C(S_l) \) and an open set \(V_l \subset S_l^o \) with \(\lambda^{n-1}(V_l) = 1 \) \((l = 0, 1) \) such that

\[
\frac{\partial f_l}{\partial x_j}(x) = 0 \ \forall x \in V_l, \ 1 \leq j < n,
\]

\[
f_l(u) = y_u \ \forall u \in A_l \quad \text{and} \quad m \leq f_l(x) \leq M \ \forall x \in S_l.
\]
For any $x = (x_1, x_2, \ldots, x_n) \in I^n$, define $x^l \in S_l$ by $(x^l)_j = x_j$ if $j < n$ and $(x^l)_n = l$ for $l = 0, 1$. Define $f: I^n \to \mathbb{R}$ by

$$f(x) = f_0(x^0) + [f_1(x^1) - f_0(x^0)] \cdot \psi(x_n) = [1 - \psi(x_n)] \cdot f_0(x^0) + \psi(x_n) \cdot f_1(x^1).$$

Also define

$$V = (I^n)^o \cap \left(\bigcap_{j=0}^{1} \{x \in I^n : x^l \in V_j \} \right) \cap \{x \in I^n : x_n \notin C \}.$$}

It is obvious that V is open and $\lambda^n(V) = 1$. The continuity of the functions $x \to x^l$ ($l = 0, 1$), each f_j, and ψ ensures that f is continuous on I^n. Plainly, $\nabla f(x) = 0 \forall x \in V$ by the definition of f and the definition of V. This proves (i).

If $u \in A_0$, then $u_n = 0$, $u = u^0$, and $\psi(u_n) = 0$, hence $f(u) = f_0(u) = y_u$. If $u \in A_1$, then $u_n = 1$, $u = u^1$, and $f(u) = f_1(u) = y_u$. Thus (ii) holds.

Since $0 \leq \psi \leq 1$, $f(x)$ is between $f_0(x^0)$ and $f_1(x^1)$ so (iii) holds too. □

(2.2) Remark. It is not difficult to replace I^n with any closed interval $I = [a, b] = \{x \in \mathbb{R}^n : a \leq x_j \leq b_j, \ 1 \leq j \leq n\}$, where $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n)$.

(2.3) Lemma. Let $n \in \mathbb{N}$, let $G \in C(I^n)$, and let $\varepsilon > 0$. Then there exist a function $H \in C(I^n)$ and an open set $V \subset (I^n)^o$ with $\lambda^n(V) = 1$ such that

(i) $\nabla H(x) = 0 \forall x \in V$,

(ii) $\|G - H\|_u < \varepsilon$,

where $\|F\|_u = \sup\{\|F(x)\| : x \in I^n\}$ for any $F \in C(I^n)$.

Proof. Suppose $n = 1$. Find $N \in \mathbb{N}$ such that $|G(u) - G(v)| < \varepsilon/2$ if $u, v \in I$ and $|u - v| < 1/N$. As before, let C be Cantor's ternary set and let ψ be Lebesgue's singular function. Define

$$H(x) = G \left(\frac{k}{N} \right) + \left[G \left(\frac{k + 1}{N} \right) - G \left(\frac{k}{N} \right) \right] \cdot \psi(Nx - k)$$

if $k \in \{0, 1, \ldots, N - 1\}$ and $\frac{k}{N} \leq x \leq \frac{k + 1}{N}$, also define

$$V = \bigcup_{k=0}^{N-1} \{x \in I : k \leq Nx \leq k + 1, \ (Nx - k) \notin C \}.$$}

Notice that $H(\frac{k}{N}) = G(\frac{k}{N})$ for $k = 0, 1, \ldots, N$, $H \in C(I)$, $\lambda(V) = 1$, and $k \leq Nx \leq k + 1 \Rightarrow$

$$|H(x) - G(x)| \leq \left| H(x) - G \left(\frac{k}{N} \right) \right| + \left| G \left(\frac{k + 1}{N} \right) - G(x) \right|$$

$$< \left| G \left(\frac{k + 1}{N} \right) - G \left(\frac{k}{N} \right) \right| \cdot \psi(Nx - k) + \frac{\varepsilon}{2} < \varepsilon.$$}

Plainly, $x \in V \Rightarrow \nabla H(x) = H'(x) = 0$ so the lemma holds for $n = 1$.

Suppose $n > 1$ and, as an induction hypothesis, that the lemma is true if n is replaced by $n - 1$. The uniform continuity of G provides $\delta > 0$ such that

(1) $u, v \in I^n, \ |u - v| < \delta \Rightarrow \|G(u) - G(v)\| < \varepsilon/8$.

Choose $N \in \mathbb{N}$ with $N\delta > 1$. For any $r \in \{0, 1, \ldots, N\}$, we identify the slice $S_r = \{x \in I^n : x_n = r/n\}$ with I^{n-1} in the obvious way, and we write $S_r^c = \{x \in S_r : 0 < x_j < 1 \; \forall j < n\}$.

For each such r, we apply our induction hypothesis to the restriction of G to S_r to obtain a continuous function $G_r \in C(S_r)$ and an open set $V_r \subset S_r^c$ which is open in S_r such that

$$\lambda^{n-1}(V_r) = 1,$$

$$\frac{\partial G_r}{\partial x_j}(x) = 0 \; \forall x \in V_r \; (1 \leq j \leq n), \text{ and}$$

$$|G(x) - G_r(x)| < \frac{\varepsilon}{8} \; \forall x \in S_r.$$

Next we construct H on I^n which extends each G_r and satisfies the requirements of the lemma.

The construction of H is exactly the same as that of Q_n in the proof of Theorem (1.1). That is,

$$H(x) = G_{r-1}(x^{r-1}) + [G_r(x^r) - G_{r-1}(x^{r-1})] \cdot \psi(N x_n - r + 1)$$

if $(r-1)/N \leq x_n \leq r/N$. Also define

$$V = (I^n)^c \cap \left(\bigcap_{r=0}^{N} \{x \in I^n : x^r \in V_r\} \right)$$

$$\cap \left(\bigcup_{r=1}^{N} \{x \in I^n : r - 1 \leq N x_n \leq r, (N x_n - r + 1) \notin C\} \right),$$

where C is Cantor's ternary set. Plainly V is open, $\lambda^n(V) = 1$, $H \in C(I^n)$, and $\nabla H(x) = 0 \; \forall x \in V$.

Now let $x \in V$ with $r - 1 < N x_n < r$. Then we have

$$\|x - x^r\| < \|x^{r-1} - x^r\| = 1/N < \delta \; \text{ and also } \|x - x^{r-1}\| < \delta.$$

From (1) and (2) we have

$$|H(x) - G(x)| = |G_{r-1}(x^{r-1}) + [G_r(x^r) - G_{r-1}(x^{r-1})] \cdot \psi(N x_n - r + 1) - G(x)|$$

$$\leq |G_{r-1}(x^{r-1}) - G(x^{r-1})| + |G(x^{r-1}) - G(x)|$$

$$+ |G_r(x^r) - G_{r-1}(x^{r-1})| \cdot |\psi(N x_n - r + 1)|$$

$$\leq \frac{\varepsilon}{8} + \frac{\varepsilon}{8} + |G_r(x^r) - G_{r-1}(x^{r-1})|$$

$$\leq \frac{\varepsilon}{4} + |G_r(x^r) - G(x^r)| + |G(x^r) - G(x^{r-1})|$$

$$+ |G(x^{r-1}) - G_{r-1}(x^{r-1})|$$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} < \varepsilon.$$

Thus $\|H - G\|_u < \varepsilon$ on I^n. This completes the proof. □

(2.4) **Lemma.** Let $n \in \mathbb{N}$ and let $Q \in C(I^n)$ be such that there exists an open set $V \subset (I^n)^c$ with $\lambda^n(V) = 1$ on which ∇Q exists and is continuous. Suppose
that $F_0 \in C(I^n)$ and $\varepsilon > 0$. Then there exist $F \in C(I^n)$ and an open set $W \subset V$ with $\lambda^n(W) = 1$ such that

(i) ∇F exists and is continuous on W,

(ii) $\nabla F(x) = \nabla Q(x)$ $\forall x \in W$, and

(iii) $\|F - F_0\|_u < \varepsilon$.

Proof. Apply Lemma (2.3) to $G = F_0 - Q$ to obtain $H \in C(I^n)$ and an open set $V_0 \subset (I^n)^o$ with $\lambda^n(V_0) = 1$ such that $\|H - G\|_u < \varepsilon$ and $\nabla H(x) = 0$ $\forall x \in V_0$. Take $F = Q + H$ and $W = V \cap V_0$ to complete the proof.

(2.5) **Main Theorem.** Let $n \in \mathbb{N}$, let $f \in C(I^n, \mathbb{R}^n)$, let $F_0 \in C(I^n)$, and let $\varepsilon > 0$. Then there exist $F \in C(I^n)$ and an open set $W \subset (I^n)^o$ with $\lambda^n(W) = 1$ such that

(i) ∇F exists and is continuous on W,

(ii) $\|\nabla F(x) - f(x)\| < \varepsilon$ $\forall x \in W$, and

(iii) $\|F - F_0\|_u < \varepsilon$,

where $\|y\| = (\sum_{j=1}^n y_j^2)^{1/2}$ $\forall y \in \mathbb{R}^n$.

Proof. Take $P = f$ in (1.1) to produce a Q and then use (2.4) to replace Q with F. □

REFERENCES

DEPARTMENT OF MATHEMATICS, MORGAN STATE UNIVERSITY, BALTIMORE, MARYLAND 21239

E-mail address: GANGMOENG2@MORGAN.EDU

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTEN, KANSAS 66506