Unit groups of integral group rings
Author:
Vikas Bist
Journal:
Proc. Amer. Math. Soc. 120 (1994), 13-17
MSC:
Primary 16U60; Secondary 16S34, 20C05
DOI:
https://doi.org/10.1090/S0002-9939-1994-1156464-9
MathSciNet review:
1156464
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be the unit group of the integral group ring
. A group
satisfies
if either the set
of torsion elements of
is a central subgroup of
or, otherwise, if
does not centralize
, then for every
. This property appears quite frequently while studying
. In this paper we investigate why one encounters this property and we have also given a "unified proof" for some known results regarding this property. Further, some additional results have been obtained.
- [1] Vikas Bist, The structure of unit groups of group rings, Ph.D. thesis, 1990.
- [2] A. A. Bovdi, Structure of an integral group ring with trivial elements of finite order, Sibirsk. Mat. Zh. 21 (1980), no. 4, 28–37, 235 (Russian). MR 579875
- [3] J. L. Fisher, M. M. Parmenter, and S. K. Sehgal, Group rings with solvable 𝑛-Engel unit groups, Proc. Amer. Math. Soc. 59 (1976), no. 2, 195–200. MR 417231, https://doi.org/10.1090/S0002-9939-1976-0417231-3
- [4] B. Hartley and P. F. Pickel, Free subgroups in the unit groups of integral group rings, Canadian J. Math. 32 (1980), no. 6, 1342–1352. MR 604689, https://doi.org/10.4153/CJM-1980-104-3
- [5] César Polcino Milies, Group rings whose torsion units form a subgroup, Proc. Amer. Math. Soc. 81 (1981), no. 2, 172–174. MR 593449, https://doi.org/10.1090/S0002-9939-1981-0593449-6
- [6] Derek J. S. Robinson, Finiteness conditions and generalized soluble groups. Part 2, Springer-Verlag, New York-Berlin, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 63. MR 0332990
- [7] Sudarshan K. Sehgal, Topics in group rings, Monographs and Textbooks in Pure and Applied Math., vol. 50, Marcel Dekker, Inc., New York, 1978. MR 508515
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16U60, 16S34, 20C05
Retrieve articles in all journals with MSC: 16U60, 16S34, 20C05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1156464-9
Article copyright:
© Copyright 1994
American Mathematical Society