Inverse theorem for best polynomial approximation in $L_ p,\;0<p<1$
HTML articles powered by AMS MathViewer
- by Z. Ditzian, D. Jiang and D. Leviatan
- Proc. Amer. Math. Soc. 120 (1994), 151-155
- DOI: https://doi.org/10.1090/S0002-9939-1994-1160297-7
- PDF | Request permission
Abstract:
A direct theorem for best polynomial approximation of a function in ${L_p}[ - 1,1],\;0 < p < 1$, has recently been established. Here we present a matching inverse theorem. In particular, we obtain as a corollary the equivalence for $0 < \alpha < k$ between ${E_n}{(f)_p} = O({n^{ - \alpha }})$ and $\omega _\varphi ^k{(f,t)_p} = O({t^\alpha })$. The present result complements the known direct and inverse theorem for best polynomial approximation in ${L_p}[ - 1,1],\;1 \leqslant p \leqslant \infty$. Analogous results for approximating periodic functions by trigonometric polynomials in ${L_p}[ - \pi ,\pi ],0 < p \leqslant \infty$, are known.References
- Ronald A. DeVore, Dany Leviatan, and Xiang Ming Yu, Polynomial approximation in $L_p$ $(0<p<1)$, Constr. Approx. 8 (1992), no. 2, 187–201. MR 1152876, DOI 10.1007/BF01238268
- Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987. MR 914149, DOI 10.1007/978-1-4612-4778-4
- Z. Ditzian and D. Jiang, Approximation of functions by polynomials in $C[-1,1]$, Canad. J. Math. 44 (1992), no. 5, 924–940. MR 1186473, DOI 10.4153/CJM-1992-057-2
- Tamás Erdélyi, Attila Máté, and Paul Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8 (1992), no. 2, 241–255. MR 1152881, DOI 10.1007/BF01238273
- Einar Hille, G. Szegö, and J. D. Tamarkin, On some generalizations of a theorem of A. Markoff, Duke Math. J. 3 (1937), no. 4, 729–739. MR 1546027, DOI 10.1215/S0012-7094-37-00361-2
- Paul G. Nevai, Bernšteĭn’s inequality in $L^{p}$ for $0<\,p<1$, J. Approx. Theory 27 (1979), no. 3, 239–243. MR 555623, DOI 10.1016/0021-9045(79)90105-9
- Jaak Peetre, A remark on Sobolev spaces. The case $0<p<1$, J. Approximation Theory 13 (1975), 218–228. MR 374900, DOI 10.1016/0021-9045(75)90034-9
- Gancho T. Tachev, A direct theorem for the best algebraic approximation in $L_p[-1,1]\;(0<p<1)$, Math. Balkanica (N.S.) 4 (1990), no. 4, 381–389 (1991). MR 1170258
- Gancho T. Tachev, A converse theorem for the best algebraic approximation in $L_p[-1,1]$ $(0<p<1)$, Serdica 17 (1991), no. 2-3, 161–166 (1992). MR 1148311
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 151-155
- MSC: Primary 41A25; Secondary 41A10, 41A17, 41A27
- DOI: https://doi.org/10.1090/S0002-9939-1994-1160297-7
- MathSciNet review: 1160297