A characterization of the second dual of $C_ 0(S,A)$
HTML articles powered by AMS MathViewer
- by Stephen T. L. Choy and James C. S. Wong
- Proc. Amer. Math. Soc. 120 (1994), 203-211
- DOI: https://doi.org/10.1090/S0002-9939-1994-1163330-1
- PDF | Request permission
Abstract:
Let $S$ be a locally compact Hausdorff space, and let $A$ be a Banach space. The space of the continuous functions from $S$ to $A$ vanishing at infinity is denoted by ${C_0}(S,A)$. Let $MW(S,{A^{\ast }})$ be the space of the representing measures of all the bounded linear functionals on ${C_0}(S,A)$. For $\mu \in MW(S,{A^{\ast }})$ let \[ {L_\infty }(|\mu |,{A^{{\ast }{\ast }}},{A^{\ast }}) = \{ f:S \to {A^{{\ast }{\ast }}}|f( \cdot ){x^{\ast }} \in {L_\infty }(|\mu |)\forall {x^{\ast }} \in {A^{\ast }}\}.\] The second dual of ${C_0}(S,A)$ is characterized in the general case by means of certain elements in the product linear space $\prod {\{ {L_\infty }(|\mu |,{A^{{\ast }{\ast }}},{A^{\ast }}):\mu \in MW(S,{A^{\ast }})\} }$.References
- Jürgen Batt and E. Jeffrey Berg, Linear bounded transformations on the space of continuous functions. , J. Functional Analysis 4 (1969), 215–239. MR 0248546, DOI 10.1016/0022-1236(69)90012-3
- J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1974), 139–162. MR 338821, DOI 10.1090/S0002-9947-1974-0338821-5
- Michael Cambern and Peter Greim, The bidual of $C(X,\,E)$, Proc. Amer. Math. Soc. 85 (1982), no. 1, 53–58. MR 647896, DOI 10.1090/S0002-9939-1982-0647896-5
- Stephen T. L. Choy, Positive operators and algebras of dominated measures, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 3, 213–219. MR 1006639 S. T. L. Choy and J. C. S. Wong, The second dual of ${C_0}(S,A)$, J. Austral. Math. Soc. (to appear).
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), no. 3-4, 309–325. MR 559675, DOI 10.1017/S0308210500017170
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438, DOI 10.1007/978-3-642-88507-5
- James C. S. Wong, Abstract harmonic analysis of generalised functions on locally compact semigroups with applications to invariant means, J. Austral. Math. Soc. Ser. A 23 (1977), no. 1, 84–94. MR 438044, DOI 10.1017/s1446788700017377
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 203-211
- MSC: Primary 46E40; Secondary 46G99, 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1163330-1
- MathSciNet review: 1163330