Polynomial approximation for a class of physical random variables
HTML articles powered by AMS MathViewer
- by A. De Santis, A. Gandolfi, A. Germani and P. Tardelli
- Proc. Amer. Math. Soc. 120 (1994), 261-266
- DOI: https://doi.org/10.1090/S0002-9939-1994-1164142-5
- PDF | Request permission
Abstract:
In white noise theory on Hilbert spaces, it is known that maps which are uniformly continuous around the origin in the S-topology constitute an important class of "physical" random variables. We prove that random variables having such a continuity property can be approximated in the gaussian measure by polynomial random variables. The proof relies on representing functions which are uniformly S-continuous around the origin as the composition of a continuous map with a Hilbert-Schmidt operator.References
- A. V. Balakrishnan, Parameter estimation in stochastic differential systems: theory and application, Developments in statistics, Vol. 1, Academic Press, New York, 1978, pp. 1–32. MR 505445
- G. Kallianpur and R. L. Karandikar, White noise calculus and nonlinear filtering theory, Ann. Probab. 13 (1985), no. 4, 1033–1107. MR 806211, DOI 10.1214/aop/1176992798
- D. H. Griffel, Applied functional analysis, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1981. MR 637334
- A. Germani and Prodip Sen, White noise solutions for a class of distributed feedback systems with multiplicative noise, Ricerche Automat. 10 (1979), no. 1, 38–65 (1980). MR 614562
- Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. MR 0461643
- Leonard Gross, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404–440. MR 112025, DOI 10.1090/S0002-9947-1960-0112025-3
- Leonard Gross, Harmonic analysis on Hilbert space, Mem. Amer. Math. Soc. 46 (1963), ii+62. MR 161095
- A. Gandolfi and A. Germani, On the definition of a topology in Hilbert spaces with applications to the white noise theory, J. Franklin Inst. 316 (1983), no. 6, 435–444. MR 727391, DOI 10.1016/0016-0032(83)90090-X
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- P. M. Prenter, A Weierstrass theorem for normed linear spaces, Bull. Amer. Math. Soc. 75 (1969), 860–862. MR 244685, DOI 10.1090/S0002-9904-1969-12329-3
- Patricia M. Prenter, On polynomial operators and equations, Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970) Academic Press, New York, 1971, pp. 361–398. MR 0290208 A. DeSantis, A. Gandolfi, A. Germani, and P. Tardelli, A representation theorem for Radon-Nikodym derivatives in the white-noise theory, Proc. Internat. Conf. on Mathematical Theory of Control (Bombay, India, December 10-15, 1990), Marcel Dekker, New York, 1993, pp. 109-123. R. R. Mazumdar and A. Bagchi, A representation result for nonlinear filters, Proc. COMCON 3 (Victoria, Canada, October 15-18, 1991), Vol. 2, UNLV Publications, Las Vegas, 1992, pp. 794-805.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 261-266
- MSC: Primary 60B12; Secondary 28C20, 46G12, 47N30
- DOI: https://doi.org/10.1090/S0002-9939-1994-1164142-5
- MathSciNet review: 1164142