Constructing $UV^ k$-maps between spheres
HTML articles powered by AMS MathViewer
- by Steven C. Ferry
- Proc. Amer. Math. Soc. 120 (1994), 329-332
- DOI: https://doi.org/10.1090/S0002-9939-1994-1166355-5
- PDF | Request permission
Abstract:
The purpose of this note is to give a quick proof of an extremely counterintuitive theorem of Bestvina, Walsh, and Wilson. The theorem says, for example, that the degree $2$ map ${d_2}:{S^3} \to {S^3}$ is homotopic to a map such that ${p^{ - 1}}(x)$ is connected for each $x \in {S^3}$.References
- R. D. Anderson, Open mappings of compact continua, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 347–349. MR 78682, DOI 10.1073/pnas.42.6.347
- Mladen Bestvina, Characterizing $k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988), no. 380, vi+110. MR 920964, DOI 10.1090/memo/0380 A. V. Černavskii, A generalization of Keldysh’s construction of a monotone map of a cube onto a cube of higher dimension, Russian Math. Surveys 40 (1985), 165-167.
- Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 0362320, DOI 10.1007/978-1-4684-9372-6
- Steve Ferry, A stable converse to the Vietoris-Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980), no. 2, 369–386. MR 580894, DOI 10.1090/S0002-9947-1980-0580894-1 —, Mapping manifolds to polyhedra, preprint.
- Lyudmila Keldyš, Monotone mapping of a cube onto a cube of higher dimension, Mat. Sb. (N.S.) 41(83) (1957), 129–158 (Russian). MR 0090805
- R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495–552. MR 645403, DOI 10.1090/S0002-9904-1977-14321-8 J. J. Walsh, A general method of constructing $U{V^k}$-mappings on manifolds with applications to spheres, preprint, 1974. J. H. C. Whitehead, Simplicial spaces, nucleii, and $m$-groups, Proc. London Math. Soc. (3) 45 (1939), 243-327.
- David C. Wilson, On constructing monotone and $UV^{1}$ mappings of arbitrary degree, Duke Math. J. 41 (1974), 103–109. MR 339250
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 329-332
- MSC: Primary 57Q99; Secondary 57N60
- DOI: https://doi.org/10.1090/S0002-9939-1994-1166355-5
- MathSciNet review: 1166355