An improved Poincaré inequality
HTML articles powered by AMS MathViewer
- by Ritva Hurri-Syrjänen
- Proc. Amer. Math. Soc. 120 (1994), 213-222
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169032-X
- PDF | Request permission
Abstract:
We show that a large class of domains $D$ in ${\mathbb {R}^n}$ including John domains satisfies the improved Poincaré inequality \[ ||u(x) - {u_D}|{|_{{L^q}(D)}} \leqslant c||\nabla u(x)d{(x,\partial D)^\delta }|{|_{{L^p}(D)}}\] where $p \leqslant q \leqslant \tfrac {{np}} {{n - p(1 - \delta )}},\;p(1 - \delta ) < n,\;\delta \in [0,1],\;c = c(p,q,\delta ,D) < \infty$, and $u$ is in an appropriate Sobolev class.References
- Harold P. Boas and Emil J. Straube, Integral inequalities of Hardy and Poincaré type, Proc. Amer. Math. Soc. 103 (1988), no. 1, 172–176. MR 938664, DOI 10.1090/S0002-9939-1988-0938664-0
- B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52–68. MR 982072, DOI 10.1007/BFb0081242 J. Boman, ${L_p}$-estimates for very strongly elliptic systems, Department of Mathematics, University of Stockholm, Sweden, Report no. 29, 1982.
- D. E. Edmunds and B. Opic, Weighted Poincaré and Friedrichs inequalities, J. London Math. Soc. (2) 47 (1993), no. 1, 79–96. MR 1200980, DOI 10.1112/jlms/s2-47.1.79
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Ritva Hurri, Poincaré domains in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 71 (1988), 42. MR 978019
- Ritva Hurri, The weighted Poincaré inequalities, Math. Scand. 67 (1990), no. 1, 145–160. MR 1081294, DOI 10.7146/math.scand.a-12325
- Ritva Hurri-Syrjänen, Unbounded Poincaré domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (1992), no. 2, 409–423. MR 1190332, DOI 10.5186/aasfm.1992.1725
- T. Iwaniec and C. A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in $\textbf {R}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267–282. MR 802488, DOI 10.5186/aasfm.1985.1030
- Alois Kufner, Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. Translated from the Czech. MR 802206
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Raimo Näkki and Jussi Väisälä, John disks, Exposition. Math. 9 (1991), no. 1, 3–43. MR 1101948
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Wayne Smith and David A. Stegenga, Exponential integrability of the quasi-hyperbolic metric on Hölder domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 345–360. MR 1139802, DOI 10.5186/aasfm.1991.1625
- Jussi Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), no. 3-4, 201–225. MR 989396, DOI 10.1007/BF02392837
- Jussi Väisälä, Exhaustions of John domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 1, 47–57. MR 1246886
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 213-222
- MSC: Primary 46E35; Secondary 26D20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169032-X
- MathSciNet review: 1169032