Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces
HTML articles powered by AMS MathViewer
- by Norimichi Hirano
- Proc. Amer. Math. Soc. 120 (1994), 185-192
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174494-8
- PDF | Request permission
Abstract:
In this paper, we consider the existence and multiplicity of periodic solutions of the problem $u’ + Au \ni g(t,u)$ where $A$ is a subdifferential of a convex function defined in a Hilbert space $H$ and $g:R \times H \to H$ is a Carathéodory function periodic with respect to the first variable.References
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843
- Ronald I. Becker, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl. 82 (1981), no. 1, 33–48. MR 626739, DOI 10.1016/0022-247X(81)90223-7
- Haïm Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 1, 115–175 (French). MR 270222 —, Operateurs maximaux monotones, North-Holland, Amsterdam, 1973.
- Felix E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100–1103. MR 177295, DOI 10.1073/pnas.53.5.1100
- Klaus Deimling, Periodic solutions of differential equations in Banach spaces, Manuscripta Math. 24 (1978), no. 1, 31–44. MR 499551, DOI 10.1007/BF01168561
- Norimichi Hirano, Existence of multiple periodic solutions for a semilinear evolution equation, Proc. Amer. Math. Soc. 106 (1989), no. 1, 107–114. MR 953007, DOI 10.1090/S0002-9939-1989-0953007-5
- Jan Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979), no. 5, 601–612. MR 541871, DOI 10.1016/0362-546X(79)90089-0
- Ioan I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), no. 3, 653–661. MR 1015686, DOI 10.1090/S0002-9939-1990-1015686-4
- Ioan I. Vrabie, The nonlinear version of Pazy’s local existence theorem, Israel J. Math. 32 (1979), no. 2-3, 221–235. MR 531265, DOI 10.1007/BF02764918
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 185-192
- MSC: Primary 34G20; Secondary 34A60, 34C25, 35K55
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174494-8
- MathSciNet review: 1174494