A remark on Dunford-Pettis property in $L_ 1(\mu ,X)$
HTML articles powered by AMS MathViewer
- by Raffaella Cilia
- Proc. Amer. Math. Soc. 120 (1994), 183-184
- DOI: https://doi.org/10.1090/S0002-9939-1994-1176480-0
- PDF | Request permission
Abstract:
We prove that if $X$ is an ${L_\infty }$ space, then ${L_1}(\mu ,X)$ has the Dunford-Pettis Property.References
- Kevin T. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), no.Β 1, 35β41. MR 531148, DOI 10.1007/BF01406706
- Jean Bourgain, New classes of ${\cal L}^{p}$-spaces, Lecture Notes in Mathematics, vol. 889, Springer-Verlag, Berlin-New York, 1981. MR 639014
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015 J. Diestel, Notes on the resume of Grothendieck, preprint, 1988.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 183-184
- MSC: Primary 46E40; Secondary 46B20, 46M05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1176480-0
- MathSciNet review: 1176480