Parabolicity of a class of higher order abstract differential equations
HTML articles powered by AMS MathViewer
- by Ti Jun Xio and Jin Liang
- Proc. Amer. Math. Soc. 120 (1994), 173-181
- DOI: https://doi.org/10.1090/S0002-9939-1994-1182708-3
- PDF | Request permission
Abstract:
Let $E$ be a complex Banach space, ${c_i} \in \mathbb {C}\;(1 \leqslant i \leqslant n - 1)$, and $A$ be a nonnegative operator in $E$. We discuss the parabolicity of the higher-order abstract differential equations \begin{equation} \tag {$\ast $} {u^{(n)}}(t) + \sum \limits _{i = 1}^{n - 1} {{c_i}{A^{{k_i}}}{u^{(n - i)}}(t) + Au(t) = 0} \end{equation} and some perturbation cases of ($\ast$). A sufficient and necessary condition for ($\ast$) to be parabolic is obtained, provided ${k_1} > {k_2} - {k_1} > \cdots > 1 - {k_{n - 1}} > 0,\;{c_i} \ne 0\;(1 \leqslant i \leqslant n - 1)$. For $A$ strictly nonnegative (Definition 1.3), $n = 3,{c_1},{c_2} \geqslant 0$, a sharp criterion is given.References
- G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math. 39 (1981/82), no. 4, 433–454. MR 644099, DOI 10.1090/S0033-569X-1982-0644099-3
- Shu Ping Chen and Roberto Triggiani, Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems, Approximation and optimization (Havana, 1987) Lecture Notes in Math., vol. 1354, Springer, Berlin, 1988, pp. 234–256. MR 996678, DOI 10.1007/BFb0089601
- Shu Ping Chen and Roberto Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), no. 1, 15–55. MR 971932, DOI 10.2140/pjm.1989.136.15
- Hector O. Fattorini, The Cauchy problem, Encyclopedia of Mathematics and its Applications, vol. 18, Addison-Wesley Publishing Co., Reading, Mass., 1983. With a foreword by Felix E. Browder. MR 692768
- Angelo Favini and Enrico Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), no. 5, 1005–1022. MR 1123349
- Fa Lun Huang, On the holomorphic property of the semigroup associated with linear elastic systems with structural damping, Acta Math. Sci. (English Ed.) 5 (1985), no. 3, 271–277. MR 856278, DOI 10.1016/S0252-9602(18)30548-4 —, A problem for linear elastic systems with structural damping, Acta Math. Sci. 6 (1986), 107-113.
- Fa Lun Huang, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim. 26 (1988), no. 3, 714–724. MR 937680, DOI 10.1137/0326041
- Fa Lun Huang, Some problems for linear elastic systems with damping, Acta Math. Sci. (English Ed.) 10 (1990), no. 3, 319–326. MR 1099672, DOI 10.1016/S0252-9602(18)30405-3
- Enrico Obrecht, Sul problema di Cauchy per le equazioni paraboliche astratte di ordine $n$, Rend. Sem. Mat. Univ. Padova 53 (1975), 231–256 (Italian, with English summary). MR 419972
- Tijun Xio and Jin Liang, Analyticity of the propagators of second order linear differential equations in Banach spaces, Semigroup Forum 44 (1992), no. 3, 356–363. MR 1152544, DOI 10.1007/BF02574355
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 173-181
- MSC: Primary 34G10; Secondary 47D09
- DOI: https://doi.org/10.1090/S0002-9939-1994-1182708-3
- MathSciNet review: 1182708