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CLASSIFICATION OF COHEN-MACAULAY MODULES

OF COVARIANTS FOR SYSTEMS OF BINARY FORMS

BRAM BROER

(Communicated by Eric Friedlander)

Abstract. For every module of covariants for a system of binary forms a for-

mula is given, measuring to what extent Stanley's functional equation fails to

be satisfied. As an application a new proof is given for the classification of the

Cohen-Macaulay modules of covariants for systems of binary forms.

Introduction

Let V and M be two finite-dimensional SL2-modules. The vector space

of polynomial maps V —> M commuting with the SL2-actions is a finitely

generated graded module B(M) over the algebra B of invariant polynomial

functions on V . It is called the module of covariants for V of type M. The

ring of invariants is finitely generated and Hochster and Roberts [7] showed that

it is Cohen-Macaulay, in fact, even Gorenstein.

If the highest weights of M are smaller than s -2, where s is an easily com-

puted integer depending on V, Stanley [10] proved in 1979 that the generating

function of B(M) satisfies a functional equation of the kind

3?(B(M);t) = (-l)dr(i,mV^(B(M),t-x)

and made some conjectures.

Early in 1989 Van den Bergh proved these conjectures for SL2 (and later

for general reductive groups, see [2]), by showing that these modules of covari-

ants of small type are Cohen-Macaulay graded /5-modules. In the spring of the

same year we described [3] a new method of calculating generating functions

and found some examples of modules of covariants not satisfying the func-

tional equation together with a formula for the deviation from it. Furthermore,

we classified the Cohen-Macaulay modules of covariants for certain classes of

representations V. Subsequently, in the fall Van den Bergh [ 1 ] finished the

classification for all V.
In this article we complete the picture by calculating the deviation from Stan-

ley's functional equation for all modules of covariants and giving it an interpre-

tation. Satisfying the functional equation turns out to be equivalent to being
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Cohen-Macaulay. We reprove the complete classification in a more elementary
way.

The first sections are concerned with generating functions and complete the

results in [3]. Next we show that there are at most two nonvanishing local coho-

mology groups. Finally we prove the classification of Cohen-Macaulay modules

of covariants in full and give an interpretation of the deviation from Stanley's

functional equation.

1. Notation

Let k be an algebraically closed field of characteristic zero. Let G :=

SL(2, k) and Rp be the irreducible representation on the binary forms of

degree p. The subgroup of diagonal matrices is denoted by 77. We fix a

representation V = Rljl © •• • © Rdm , where we suppose that (7, is even if and

only if i <e, and e = dim VH .
Write A :=k[V] for the algebra of functions on V, B := AG for the ring of

invariants, and B(M) := (A <g> M)G for the module of covariants of type M,

where M is any G-module. They all have a natural Nm-graded structure. For

any Zm-graded vector space W = 0igZ„, Wx we define the generating function

&(W)=9(W;t):= ^dimH^r1,
igZm

where t! := Y[n=i # • By r1 we mean (tfx,... ,t~x).

Using the notation \z\  for the smallest integer greater than or equal to z,

we define
r»/2i-i

fin)(t):=    n   (1-*"""<).

and f(x ,t):= Y[k=i f{~dk\x, tk). Now write s for the degree of / with respect

of x , and define /?,, </>,, and ofi  by

i . CX)

f(X , t) = £ Pi(t)Xl ,       jr— = }2 MW ,       0fl   = fip_i - Bi+p+2.
i=0 J\   '   )      ,=0

Finally E := Y[ek=x(l - tk), T := Ufli(-ti)W2] , and x := ££1 W/2] . Then
dim V = 2x + e.

Lemma 1.1. Let p e Z.
(i) We have

22aPi&(B(Ri),t)=<t>-p-*-''-2.
i

(ii) as-2+p(t) = -Tafp(t-x).

(iii) Po = <f>0 = 1 and ZU <t>ifc-i = 0 for k>\.
Proof. The first statement can be proved as [3, Proposition 3.1], the second

statement is just [3, Lemma 4.2.3], and (iii) follows from / • 4- = 1  and the

Cauchy product of power series.   □
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2. Functional equations

We write

fp = fp(X) := &(B(RP); t) + (-lfmV(tdf+x • ■ • td^x)~x^(B(Rp); r1)

for the deviation from Stanley's functional equation. We have the following

basic result.

Proposition 2.1. (i) For 0 <p < s -2 we have % = 0.

(ii) For k > 0 we have 2>s-2+k = ~¥kl(ET), where y/k(t) is the coefficient
of xk in the Maclaurin expansion with respect to x of

(1-x2)

f(x,t)f(x,t-xy

Proof The first statement is proved in [3, Proposition 6.4] and is well known.

Using this fact and E,>0Q-"2+/c(t)^(7i(/v,); t) = 0 for k > 0, by Lemma

1.1 (i), we have

£ of-2+k(m=Y,<2+km
i>s-2 ;>0

= (-l)«mV(tdf+l---tt+x)-x22<2+k(t)&(B(Ri);t-x)

<>o

= (-l)^\tdf+x---tt+x)-xY,-Tcc-k(t-X)^{B(Ri);t-x)

;>0

- _Tt-X\&mV(A + x        <dm + l\-l (^(t"') ~ ^fc_2(t~'))
-   *\   i)      v'i     •••'«!    ; E(t~x)

= j±(4,k(rx) - 4>k_2(rx)).

Using ajl2+) = Pk-j > f°r 7 > 0, we established for all k > 0

£&_,(t)|;_2+; = =±(<t>k(t-1) - ^_2(r>)).

7>0

So

k _.     k

2ZT,^P(k-i)-j(tK-2+J = wY,<l>i(t)(<l>k-i(t-l)-<i>k-i-2(t-1)),
;=0 ;>0 (=0

and using Lemma 1.1 (iii) we get

-1   *
3_2+fe = ^ E ^(t)(^-«(t_1) - fc-MvO) = ^-

i=0

This completes the proof,   n

3. Degrees of generating functions

For a polynomial p e Z[tx, ... , tm] we write deg,p for the degree of p

with respect to /, and degp for the total degree. For a rational function p/q
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we define as usual degi(p/q) = deg,p - deg, q and deg(p/q) = degp - degq .

In this section we will calculate the degree of &(B(Rf), t) if i > s — 2.

We start with a lemma.

Lemma 3.1. (i) If e < m then deg4>k = k; if e = m then 4>2k+x = 0 and
degqb2k = k.

(ii) If e < j < m then deg; <f>k = k and if I < j < e then deg; <p2k = k and

deg7 4>2k+x = k provided that e f= m .

Proof. The Maclaurin expansion of 1/(1 - sx") is 1 + sxn + s2x2n + s3xin

+ ■•• . Now j is a product of such terms with various n and various tj for

Suppose e < j < m. Then fi contains a unique factor 1 - xf■. So <f>k

contains tk as the highest y'-degree term. So deg; <j)k = k .

If 1 < j < e, then / contains the factor 1 - x2tj . So in tf>2k the term of

highest j -degree is tk and degj(f)2k = k. If e < m then tk(te+l + ■ ■■ + tm)

is part of the highest j-degree, and degj(cj)2k+x) = k . If e = m , then clearly

02A:+i = 0 • This proves (ii); the first statement is proved analogously.   □

The following proposition extends [3, Proposition 7.5.1], saying, for example,

that the total degree of S'(B(RP), t) is less than or equal to -dim V if p <

s - 2. This follows easily from Lemma 2.1(i). Recall x := YlT-i 1^72] •

Proposition 3.1. Let k > 0.
(i) If e < m, then

deg&(B(Rs_2+k), t) = - dim V + x + k.

(ii) If e = m, then B(R2k+x) = 0 and deg&(B(Rs_2+2k), t) = -dimF +
x + k.

(iii) If e<i<m, then deg, &(B(Rs_2+k) ,t) = k- \dt/2].
(iv) If 1 <i <e, then degt^(B(Rs_2+2k), t) = deg,¥(B(Rs_2+2k+x), t) =

k-dx/2.

Proof. The lowest degree of a term in the denominator minus the lowest de-

gree of a term in the numerator of S'(B(Rs_2+k); t_1) is just the degree 8 of

S'(B(Rs_2+k); t). Using Proposition 2.1(H) one sees that -dim V - 8 equals

the lowest degree of a term in y/k/T, which is just -x - k if e < m, and

-t - k/2 if e = m and k is even.
So 8 = - dim V + x + k if e < m and 8 = - dim V + x + k/2 if e = m

and k is even. This proves (i) and (ii). The remaining statements are proved

analogously.   □

4. Depth estimates

From now on we only consider the total grading and write S,(B(Rf)) -

S?(B(Rf), t) for the corresponding single-variable Hilbert series. Let R be

any finitely generated d-dimensional N-graded k-algebra, with /?o = k. Write

R+ for the unique maximal graded ideal and 8 for the degree of 2?(R) as a

rational function. Write HlR+(N) for the /th local cohomology group of the

graded module N in the category of graded /v-modules. See [6] for some of

its properties; the most important being that dim N (resp.   depthij+(/V), i.e.,
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the length of the longest regular sequence on N consisting of homogeneous

elements of R+) is the largest (resp. smallest) index i such that HR+(N) ± 0.

For any graded /v-module N the graded dual is defined as

7V-v:=®Homk(/V_„,k);

nez

it is a graded R-module.

Lemma 4.1. Suppose R  is Gorenstein.   For any finitely generated graded R-

module N

Hk+(Ny~ExtdR-'(N,R[8]),

where R[8]i := Rs+i.

Proof. See [6, Proposition 2.1.6].   □

Using this graded duality, we prove that at most two local cohomology groups

of modules of covariants do not vanish. We start with a lemma concerning the

support. Write n : V -» V//G for the quotient morphism.

Lemma 4.2. The support of E\t'B(A, B) is contained in n(VH).

Proof. Let x $. n(VH) and x be an element on the unique closed orbit in

n~x(x). Then its stabilizer K is finite. Let N be the slice representation at

x, i.e., a Testable complement of TxGx c TXV = V. The quotient map N —►

N//K for K is equidimensional, so k[N] is a Cohen-Macaulay (B' := kfA^]*)-

module. B' is Gorenstein, since the finite group K acts with determinant equal

to one on N. Using Lemma 4.1 it follows that Ext'B,(k[N], B') = 0 if / ^ 0.

According to Luna's etale slice theorem (see [9]), there is an f e B with

f(x) f= 0 and a Cartesian diagram

(k[G]®kk[JV]/)*    —    Af

1 1
B'p <—    Bf

where the horizontal maps are faithfully flat; K acts on k[G xJV]~ k[G] ®t

k[/V] by (kx)(g, n) := x(gk, k~xn), with k e K, g e G, n e Nf,, and
x e k[C7 x N]. In particular,

(k[G]<8>k[N]f)K^Af®BfB'f.

So for every G-module M, we have for i ^ 0

ExtB(B(M), B)f ®Bf B'f ~ ExtB,((M ®k Af ®Bf B'ff, B'f)

~ Ext^,((M ®k k[G] ®k ®k[N]f)GxH , B'f)

~ExtB,((M®kk[N]f)H,B'f)~0.

So Ext'B(A, B)f = 0 and x is not in the support of Ext'B(A, B).   a

The following lemma is very useful and is due to Brion [4].
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Lemma 4.3. Suppose dim V//G - e > 2. Then B(M) ~ B(M*) ~ B(M)* for
all G-modules M.

Proof. We sketch the proof. Let 4> be the composition

B(M*) ~ Horn^ ® M, Af - HomB(fi(M), 5) = t3(M)* ,

where the second map is the restriction. As in the proof of Lemma 4.2 one

checks that tf> is an isomorphism outside n(VH). Since both B(M*) and

B(M)* are reflexive and the codimension of n(VH) in V//G is dimV//G-e >

2, we conclude that <fi is an isomorphism.   □

We apply the foregoing lemmas to give a direct proof of a fact observed

before by Van den Bergh [1].

Proposition 4.1. Suppose dimV//G - e > 2 and let M beany G-module. Then

for i £ 0 or x - 2

ExtB(B(M), B) = Hdf'(B(M)) = 0.

Proof. Let P be the homogeneous prime ideal of B corresponding to n(VH).

The variety X := n~xn(VH) equals G • (®J>0 Vj), where Vj is the //-weight

space of weight j . Since X is stabilized by the upper triangular matrices of

G, the dimension of X is x + e + 1 . Since A is Cohen-Macaulay, we have

devthP(A) = height(/J • A) = dim V - dim X = x - 1.

Suppose there is a j > 0 such that ExtB(B(M), B) ^ 0, and take j minimal.

By dualizing a free resolution of B(M) we get a sequence

0 -» 5(A0* -» Tq* -»-► 7)* - C -» 0,

where all F(* are free and ExtB(B(M), B) c C. Let Q D P be an associated

prime ideal of Ext^(5(Af), B); it is associated to C as well, depthG(C) = 0,
and by the depth lemma [5, Lemma 1.1] depthQ(B(M)*) = j + 1 .

Since B(M) ~ B(M)* by Lemma 4.3, we have

j+l= depthG(5(A7)*) > deothP(B(M)*)

= deothP(B(M)) > depth^(^) = t - 1.

So j > x - 2. By Lemma 4.1 we get Hdfj(B(M)) = 0if0<;'<T-2.

Since

depthB+ A = height(B+A) = codim,/ n~xn(0) = dim V - x - 1,

we have HdfJ(B(M)) = 0 forj>x-2. We conclude that ExtB(B(M), B)

vanishes for j > x - 2, by using Lemma 4.1 again. This proves the lemma.

(This proof is inspired by the proof of [5, Theorem 3.8].)   □

5. Classification of Cohen-Macaulay modules of covariants

Let C be the subalgebra of B generated by a homogeneous system of pa-

rameters of degrees ox, ... , od , and write 0 := dim V - ^f=1 07. Since B is

a graded Gorenstein domain, by the theorem of Hochster and Roberts, B is

finitely generated and free as a C-module.
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Proposition 5.1. Suppose dim V//G - e > 2.
(i) Let p > 0, and if e = m let p be even. Then

2?(ExtxB-2(B(Rp),B);t) = (-l)x~% = ^t!^"'-

(ii) Now suppose that p > s - 2. Then Extxf2(B(Rp), B) is a Cohen-
Macaulay B-module of dimension e.

(iii) There is a minimal free graded C-resolution of B(RP) of the form

0 - Fr_2 - FT_3 - ... -> Fx - 7b - B(RP) -» 0.

77z« resolution and its dual, shifted over a degrees, patch together to a minimal

free graded C-resolution of ExtB~2(B(Rp), B):

0 - /rT_2 -»• • • -» Fo - 7o>] - F,'M -»■•.- FT*_2[a]

^Ext^2(5(/?p),5)^0.

TVoo/ Let for the moment F. -> B(RP) be any free graded C-resolution, which

is always of finite length. The homology group //,(F.*) of the dual complex is

Extc(B(Rp), C). Since by standard arguments Hdfi(B(Rp)) ~ HdBfi(B(Rp)),

it follows by applying Lemma 4.1 twice that Ext'c(B(Rp), C)[o] =

Ext'B(B(M), B) as /3-modules. By Proposition 4.1 there are at most two non-

vanishing Ext-groups of which Ext°B(B(Rp), B) ~ Rp , by Lemma 4.3.
From

W(B(Rp),t) = Ydi-^{Fi,t)
i

and &(F*[o}; t) = (-l)drdimV^(F,; rx) we get

(-l)dt-«™r3?(B(Rp)\rx) = £(-l)'3?(7n-a], t).
i

Since

£(-l)'S?(7n-cr], t) =&(B(RPr , t) + (-l)x-2&(Extxf2(B(Rp), B), t),

i

we get

&(ExtxB-2(B(Rp),B);t)

= (-1)X-X(3?(B(RP); t) - (-l)dr&mV&(B(Rp); r1))

_(    ,vt-2S  ._. ¥P-s+2(t)rx
-v   U     yp-     (1_,)e     »

where we used Proposition 2.1. This proves (i).

By Lemma 3.1, ExtB~2(B(Rp), B) does not vanish if and only if p > s - 2
and, when e = m, p is even . If it vanishes and B(RP) is not zero, then by

Lemma 4.1 the depth of B(RP) is d; hence, B(RP) is free as a C-module.
From now on suppose p > s - 2 and, when e = m, p is even. Then the

depth of B(RP) is d - (x -2), so a minimal free graded C-resolution exists
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of length x - 2. Taking its dual and shifting over o degrees, we get that

0 - B(RP)* - F0*[o] - • • • - Fx*_2[o] - ExtB~2(B(Rp), B) - 0

is exact. Since B(RP)* ~ fi(/?p), the two free complexes glue together to a

minimal free graded C-resolution of ExtB~2(B(Rp), B), and so the depth of it

is 2v - d - 1 = e. From the Hilbert series we see that its dimension is also e ,

so ExtB~2(B(Rp), B) is a graded Cohen-Macaulay 5-module.   □

5.1. The representations V such that all its modules of covariants are Cohen-

Macaulay are the same as those where the quotient map n is equidimensional,

so those where

m    r-  , -

dimV-dimV//G = dimn-xn(ff) = Y^   -j-   +1 = T+1.
j=i

So by some arithmetic, the result is that, up to trivial summands, V is one of

the representations contained in

{Rx ,/?,©/?,, R2 ,RX © R2, R2 © R2, /?3, Ra}.

In fact, in this case all modules of covariants are free (see [8]). They can also

be characterized as the representations with dim V//G - e < 2.

The full classification is given in the following theorem.

Theorem 5.1. (i) If dim V - d = x + 1 then all modules of covariants for V are

free.
(ii) Suppose dim V - d < x + 1. If e = m then B(RP) = 0 when p is odd.

Let p e N be even if e = m and arbitrary if e j= m. The following statements

are equivalent:

(1) P<s-2;
(2) B(RP) is a Cohen-Macaulay B-module;

(3) the deviation S?p from Stanley's functional equation is zero;

(4) the degree of S/(B(RP)) as a rational function is smallar than or equal

to - dim V;
(5) HxBV-l(B(RP)) = 0;and

(6) ExtB~2(B(Rp),B) = 0.

Proof. We discussed (i) just before the statement of the theorem. The equiva-

lences follow from Proposition 5.1 using Propositions 3.1 and 4.1 and Lemma

4.1.    D
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