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CLASSIFICATION OF COHEN-MACAULAY MODULES
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ABSTRACT. For every module of covariants for a system of binary forms a for-
mula is given, measuring to what extent Stanley’s functional equation fails to
be satisfied. As an application a new proof is given for the classification of the
Cohen-Macaulay modules of covariants for systems of binary forms.

INTRODUCTION

Let VV and M be two finite-dimensional SL,-modules. The vector space
of polynomial maps ¥V — M commuting with the SL,-actions is a finitely
generated graded module B(M) over the algebra B of invariant polynomial
functions on V. It is called the module of covariants for V' of type M . The
ring of invariants is finitely generated and Hochster and Roberts [7] showed that
it is Cohen-Macaulay, in fact, even Gorenstein.

If the highest weights of M are smaller than s — 2, where s is an easily com-
puted integer depending on V', Stanley [10] proved in 1979 that the generating
function of B(M) satisfies a functional equation of the kind

FBM); )= (-1 IV Z(BM), t7")

and made some conjectures.

Early in 1989 Van den Bergh proved these conjectures for SL, (and later
for general reductive groups, see [2]), by showing that these modules of covari-
ants of small type are Cohen-Macaulay graded B-modules. In the spring of the
same year we described [3] a new method of calculating generating functions
and found some examples of modules of covariants not satisfying the func-
tional equation together with a formula for the deviation from it. Furthermore,
we classified the Cohen-Macaulay modules of covariants for certain classes of
representations V. Subsequently, in the fall Van den Bergh [1] finished the
classification for all V.

In this article we complete the picture by calculating the deviation from Stan-
ley’s functional equation for all modules of covariants and giving it an interpre-
tation. Satisfying the functional equation turns out to be equivalent to being
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38 BRAM BROER

Cohen-Macaulay. We reprove the complete classification in a more elementary
way.

The first sections are concerned with generating functions and complete the
results in [3]. Next we show that there are at most two nonvanishing local coho-
mology groups. Finally we prove the classification of Cohen-Macaulay modules
of covariants in full and give an interpretation of the deviation from Stanley’s
functional equation.

1. NOTATION

Let k be an algebraically closed field of characteristic zero. Let G :=
SL(2, k) and R, be the irreducible representation on the binary forms of
degree p. The subgroup of diagonal matrices is denoted by H. We fix a
representation V = R; & --- & R, , where we suppose that d; is even if and
onlyif i<e,and e=dimV¥ .

Write 4 := k[V] for the algebra of functions on V', B := AC for the ring of
invariants, and B(M) := (4 ® M)¢ for the module of covariants of type M,
where M is any G-module. They all have a natural N"-graded structure. For
any Z™-graded vector space W = @;.;» W; we define the generating function

FW)=F(W;t):= ) _ dimWt,
iezm

where ti:= [, t7. By t~! wemean (¢7',...,1,").

Using the notation [z] for the smallest integer greater than or equal to z,

we define
[n/21-1

M@= [ (1-x"2),
i=0
and f(x,t):=[[{~, /%) (x, t;). Now write s for the degree of f with respect
of x, and define B;, ¢;, and of by

s A | 00 .
flx, =) Bit)x', ———==) ¢di(t)x', of =B, i— Birps2.
20 T =2 poi ™ e

Finally E :=[[{_,(1 — ), T:=[]2,(-t)%/? and 7:= Y7 ,[d;/2]. Then
dimV =21+e.

Lemma 1.1. Let p€ Z.
(i) We have

_ P —P—p—2
Za’f?(B(Ri), )= L2

(ii) &72P(t) = —Ta 2 (t1).
(iii) fo=go=1 and Y ohifi—i =0 for k> 1.

Proof. The first statement can be proved as [3, Proposition 3.1], the second

statement is just [3, Lemma 4.2.3], and (iii) follows from f - } =1 and the

Cauchy product of power series. O
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2. FUNCTIONAL EQUATIONS
We write
Zo=Z(8) == Z(B(R,): ) + (— 1)V (i1 . o))~ 12 (B(R,); )

for the deviation from Stanley’s functional equation. We have the following
basic result.
Proposition 2.1. (1) For 0 < p <s—2 we have ?}, =0.

(ii) For k > 0 we have Z,_y,; = —w/(ET), where y,(t) is the coefficient
of x* in the Maclaurin expansion with respect to x of

(1-x?)
Sx, O f(x, 1)

Proof. The first statement is proved in [3, Proposition 6.4] and is well known.
Using this fact and ;5,3 ¥ ()Z(B(R;);t) = 0 for k > 0, by Lemma
1.1(i), we have -

Z af_2+k(t)§i — Zaf—uk(t)g

i>s~2 i>0
— (_l)dim V(tt11|+1 td’"+l Zas 2+k R )’ t—l)
i>0
— (_l)dim V(tfli|+l "'tiian)_l Z —Tai_k(t")?(B(R,-); t—l)
i>0

_ imV (di+ =1 (Gk(th) = B a(t7"))
——T(—l)d V(tl l"'tfn l)l E(t_l)

= E_—;,(m(t_l) — b2 (t™h).

Using o]~ gif Brk—;j, for j >0, we established for all k£ >0

k— j A7 24j = k(t77) — Qr—ar(t™7)).
W, L) - drea(t)

j>0

So

ZZ¢I —i)— _] - 245 = ETZ¢' ) (r—i(t™ )“¢k-i—2(t‘l))a

i=0 j>0

and using Lemma 1.1(iii) we get
= 1 & 43
G2k = ET ;‘pi(t)(d’k ) = rmia(th)) = BT

This completes the proof. O

3. DEGREES OF GENERATING FUNCTIONS

For a polynomial p € Z[t,, ... , t,,] we write deg;p for the degree of p
with respect to ¢; and degp for the total degree. For a rational function p/q
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we define as usual deg;(p/q) = deg,p — deg, g and deg(p/q) = degp — degq .
In this section we will calculate the degree of S (B(R;), t) if i >s—2.
We start with a lemma.

Lemma 3.1. (i) If e < m then degd, = k; if e = m then ¢y, = 0 and
deg o =k .

(ii) If e < j < m then deg; ¢y =k and if 1 < j <e then deg;dy =k and
deg; ¢yx+1 = k provided that e #m.

Proof. The Maclaurin expansion of 1/(1 —sx") is 1 + sx" + s2x2" + s3x3"
+---. Now } is a product of such terms with various »n and various ¢; for
s.

Suppose e < j < m. Then f contains a unique factor 1 — x¢;. So ¢
contains tf as the highest j-degree term. So deg; ¢y = k.

If 1 <j<e,then f contains the factor 1 — x2¢;. So in ¢, the term of
highest j-degree is t% and deg; ¢y = k. If e < m then th(tey) + -+ tm)
is part of the highest j-degree, and deg;(¢y 1) = k. If e = m, then clearly
d+1 = 0. This proves (ii); the first statement is proved analogously. O

The following proposition extends [3, Proposition 7.5.1], saying, for example,
that the total degree of £ (B(R,), t) is less than or equal to —dim V' if p <
s — 2. This follows easily from Lemma 2.1(i). Recall 7:=Y[" [d;/2].

Proposition 3.1. Let kK > 0.
(1) If e < m, then

deg T (B(Rs_24k),t) = —dimV + 7+ k.

(ii) If e = m, then B(Ry,,) = 0 and degZ(B(R;_242k),t) = —dimV +
T+k.

(iii) If e <i<m, then deg; T (B(Rs;_2.k), t) =k — [d;i/2].

(iv) If 1 < i <e, then deg; T (B(Ry_242), t) = deg; F(B(Rs_242k41), t) =
k—d/2.
Proof. The lowest degree of a term in the denominator minus the lowest de-
gree of a term in the numerator of & (B(Rs_,,4); t™!) is just the degree & of
Z(B(Rs_2.44); t). Using Proposition 2.1(ii) one sees that —dim V' — J equals
the lowest degree of a term in y, /T, which is just —7 — k if e < m, and
—-t—k/2 if e=m and k is even.

So 6 =-dimV+t+kife<mand 6 =-dimV+1+k/2if e=m
and k is even. This proves (i) and (ii). The remaining statements are proved
analogously. O

4. DEPTH ESTIMATES

From now on we only consider the total grading and write ¥ (B(R;)) =
Z(B(R;), t) for the corresponding single-variable Hilbert series. Let R be
any finitely generated d-dimensional N-graded k-algebra, with Ry = k. Write
R* for the unique maximal graded ideal and J§ for the degree of £(R) as a
rational function. Write H,(N) for the ith local cohomology group of the
graded module N in the category of graded R-modules. See [6] for some of
its properties; the most important being that dim N (resp. depthg.(N), i.e.,
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MODULES OF COVARIANTS 41

the length of the longest regular sequence on N consisting of homogeneous
elements of R*) is the largest (resp. smallest) index i such that Hj, (N)#0.
For any graded R-module N the graded dual is defined as

NY := @) Homy(N_,, k);
nez

it is a graded R-module.

Lemma 4.1. Suppose R is Gorenstein. For any finitely generated graded R-
module N

Hj. (N)" ~ Ext4™ (N, R[4]),
where R[0); := Rs,i .
Proof. See [6, Proposition 2.1.6]. O

Using this graded duality, we prove that at most two local cohomology groups
of modules of covariants do not vanish. We start with a lemma concerning the
support. Write n: V' — V//G for the quotient morphism.

Lemma 4.2. The support of Extfg(A, B) is contained in n(VH).

Proof Let x ¢ n(V¥) and %X be an element on the unique closed orbit in
n~!(x). Then its stabilizer K is finite. Let N be the slice representation at
X, 1.e., a K-stable complement of T;3;Gx C TV =V . The quotient map N —
N//K for K is equidimensional, so k[N] is a Cohen-Macaulay (B’ := k[N]X)-
module. B’ is Gorenstein, since the finite group K acts with determinant equal
to one on N. Using Lemma 4.1 it follows that Exty, (k[N], B') =0 if i #0.

According to Luna’s étale slice theorem (see [9]), there is an f € B with
f(x) #0 and a Cartesian diagram

(K[G) & K[N]))© — 4,

B, — By

where the horizontal maps are faithfully flat; K acts on k[G x N] ~ k[G] &,
k[N] by (kx)(g,n) := x(gk,k™'n), with k € K, g € G, n € Ny, and
x € kK[G x N]. In particular, ‘

(KIG1® k[N,)" ~ 4, ®5, B).
So for every G-module M , we have for i # 0
Ext(B(M), B); ®p, B} ~ Extfg}((M ®x A ®s5, B)C, BY)
~ Exty, (M @u k[G] @« ®K[N]/)7*!, Bj)
~ Extg}((M ®x k[N1/), B}) ~ 0.
So Exty(A4, B); =0 and x is not in the support of Exty(4, B). O

The following lemma is very useful and is due to Brion [4].
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42 BRAM BROER

Lemma 4.3. Suppose dimV//G —e > 2. Then B(M) ~ B(M*) ~ B(M)* for
all G-modules M .

Proof. We sketch the proof. Let ¢ be the composition
B(M*) ~Hom,(A® M, A)° — Homg(B(M), B) = B(M)*,

where the second map is the restriction. As in the proof of Lemma 4.2 one
checks that ¢ is an isomorphism outside n(V#). Since both B(M*) and
B(M)* are reflexive and the codimension of #(V#) in V//G is dimV//G —e >
2, we conclude that ¢ is an isomorphism. 0O

We apply the foregoing lemmas to give a direct proof of a fact observed
before by Van den Bergh [1].

Proposition 4.1. Suppose dimV//G —e > 2 andlet M be any G-module. Then
for i #0 or -2

Exts(B(M), B) = Hy'(B(M)) = 0.
Proof. Let P be the homogeneous prime ideal of B corresponding to #(V).
The variety X := n~'n(V'¥) equals G- (@5, V;), where V; is the H-weight

space of weight j. Since X is stabilized by the upper triangular matrices of
G, the dimension of X is 7+ e+ 1. Since A4 is Cohen-Macaulay, we have

depthp(A4) = height(P - A) =dim V' —dimX =1 - 1.

Suppose thereisa j > 0 such that Ext{,(B(M ), B) # 0, and take j minimal.
By dualizing a free resolution of B(M) we get a sequence

0— B(M)* - Ff —»---—Ff = C—0,

where all F}* are f(ee and Ext{B(B(M ), B)c C. Let Q D P be an associated
prime ideal of Ext}(B(M), B); it is associated to C as well, depthy(C) =0,
and by the depth lemma [5, Lemma 1.1] depthy(B(M)*) =j+ 1.
Since B(M)~ B(M)* by Lemma 4.3, we have
J + 1 =depthy(B(M)") > depthp(B(M)*)
= depthp(B(M)) > depthp(4) =7 — 1.

So j>1-2. By Lemma 4.1 we get Hgfj(B(M))=0 f0<j<t-2.
Since

depthg. A = height(B* 4) = codimy n7'7(0) = dimV — 11,

we have Hi./(B(M)) =0 for j > 7 —2. We conclude that Ext}(B(M), B)
vanishes for j > v — 2, by using Lemma 4.1 again. This proves the lemma.
(This proof is inspired by the proof of [5, Theorem 3.8].) O

5. CLASSIFICATION OF COHEN-MACAULAY MODULES OF COVARIANTS

Let C be the subalgebra of B generated by a homogeneous system of pa-
rameters of degrees oy, ... , g7, and write ¢ :=dimV — Z;il o;. Since B is
a graded Gorenstein domain, by the theorem of Hochster and Roberts, B is
finitely generated and free as a C-module.
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Proposition 5.1. Suppose dimV//G—e > 2.
(i) Let p>0, and if e=m let p be even. Then

Z(Exty 2(B(R,), B); t) = (-1)"7%&, = %—(_ft_z(,t%

(i) Now suppose that p > s — 2. Then Ext}'z(B(Rp), B) is a Cohen-
Macaulay B-module of dimension e .
(iii) There is a minimal free graded C-resolution of B(R,) of the form

O0-F ,—-F_3—--—F—->F-BR,)—0.

This resolution and its dual, shifted over o degrees, patch together to a minimal
free graded C-resolution of Exty *(B(R,), B):

0— F_y— - — Fy— Fj[o] - Frlo] = - — F*,[0]
— Exty %(B(R,), B) — 0.

Proof. Let for the moment F, — B(R,) be any free graded C-resolution, which
is always of finite length. The homology group H;(F;) of the dual complex is
Extc(B(R,), C). Since by standard arguments HZ'(B(R,)) ~ Hg:'(B(Ry)),
it follows by applying Lemma 4.1 twice that Ext-(B(R,), C)[g] =
Extz(B(M), B) as B-modules. By Proposition 4.1 there are at most two non-
vanishing Ext-groups of which Ext$(B(R,), B) ~ R, , by Lemma 4.3.
From
Z(B(Ry), 1) =Y (-1)E(Fi, 1)
i
and Z(F[a]; 1) = (=) 4mVZ(F;; ') we get
(—-D)? 4™V Z(B(R,); 7)) = Y (-1)'E(F[-0], 1).
i
Since
Y (-1)Z(F[-0], 1) = Z(B(R,)*, t) + (—1)"2F (Exty *(B(R,), B), 1),
i
we get
Z (Exty *(B(R,), B); 1)

= (=) E(B(Ry); 1) — (-1)?t~ 9™V Z(B(R,); 17"))

_(_1\-28 _ Wp—s+2(D)1F

- ( 1) ‘%’ - (1 _ t)e ’

where we used Proposition 2.1. This proves (i).

By Lemma 3.1, Ext},‘z(B(R,,) , B) does not vanish if and only if p > s -2
and, when e = m, p is even . If it vanishes and B(R,) is not zero, then by
Lemma 4.1 the depth of B(R,) is d; hence, B(R,) is free as a C-module.

From now on suppose p > s — 2 and, when ¢ = m, p is even. Then the
depth of B(R,) is d — (1t —2), so a minimal free graded C-resolution exists
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of length 7 — 2. Taking its dual and shifting over o degrees, we get that
0 — B(Rp)* — Fylo] — -+ — F,[0] = Ext}’z(B(Rp), B)—-0

is exact. Since B(R,)* ~ B(R,), the two free complexes glue together to a
minimal free graded C-resolution of Extfg‘z(B(R,,) , B), and so the depth of it
is 2v —d — 1 = e . From the Hilbert series we see that its dimension is also e,
so Exty%(B(R,), B) is a graded Cohen-Macaulay B-module. O

5.1. The representations V' such that all its modules of covariants are Cohen-
Macaulay are the same as those where the quotient map 7 is equidimensional,
so those where

m
dim ¥ - dim V//G = dimn~'n(0) = ) [5“2'—1 +l=1+1.
i=1
So by some arithmetic, the result is that, up to trivial summands, V is one of
the representations contained in

{Ri,Ri®R;, Ry, Ri® Ry, R, ® Ry, R3, Ry}.

In fact, in this case all modules of covariants are free (see [8]). They can also
be characterized as the representations with dimV//G —e < 2.
The full classification is given in the following theorem.

Theorem 5.1. (i) If dimV —d = 1+ | then all modules of covariants for V are
Sree.

(i1) Suppose dimV —d <t+ 1. If e = m then B(R,) =0 when p is odd.
Let p € N be even if e = m and arbitrary if e # m. The following statements
are equivalent:

(1) p<s—2;

(2) B(Ryp) isa Co~hen-Macau1ay B-module;

(3) the deviation Z, from Stanley’s functional equation is zero,

(4) the degree of Z(B(Ry)) as a rational function is smallar than or equal

to —dimV;

(5) Hzi*"'(B(R,))=0;and

(6) Exty*(B(R,),B)=0.
Proof. We discussed (i) just before the statement of the theorem. The equiva-
lences follow from Proposition 5.1 using Propositions 3.1 and 4.1 and Lemma
4.1. O
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