Hypersurfaces satisfying the equation $\Delta x=Rx+b$
HTML articles powered by AMS MathViewer
- by Joonsang Park
- Proc. Amer. Math. Soc. 120 (1994), 317-328
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189750-7
- PDF | Request permission
Abstract:
We prove that a hypersurface in a space form or in Lorentzian space whose immersion $x$ satisfies $\Delta x = Rx + b$ is minimal or isoparametric. In particular, we locally classify such hypersurfaces which are not minimal.References
- L. J. Alías, A. Ferrández, and P. Lucas, Surfaces in the $3$-dimensional space satisfying $\Delta x = Ax + B$, preprint.
- E. Cartan, Sur les variétés de courbure constante d’un espace euclidien ou non-euclidien, Bull. Soc. Math. France 47 (1919), 125–160 (French). MR 1504786, DOI 10.24033/bsmf.997
- E. Cartan, Sur les variétés de courbure constante d’un espace euclidien ou non-euclidien, Bull. Soc. Math. France 48 (1920), 132–208 (French). MR 1504796, DOI 10.24033/bsmf.1007
- Oscar J. Garay, An extension of Takahashi’s theorem, Geom. Dedicata 34 (1990), no. 2, 105–112. MR 1061282, DOI 10.1007/BF00147319
- Martin A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), no. 1, 165–197. MR 783023, DOI 10.2140/pjm.1985.118.165
- Hans Friedrich Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), no. 1, 57–71 (German). MR 583825, DOI 10.1007/BF01420281
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Richard S. Palais and Chuu-Lian Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, Berlin, 1988. MR 972503, DOI 10.1007/BFb0087442 B. Segré, Famiglie di ipersuperifici isoparametriche neglie spazi euclidei ad un qualunque numero di dimension, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 27 (1938), 203-207.
- Tsunero Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385. MR 198393, DOI 10.2969/jmsj/01840380 B. L. Wu, Lorentzian isoparametric submanifolds, Ph.D. Thesis, Brandeis University, 1991.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 317-328
- MSC: Primary 53C50
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189750-7
- MathSciNet review: 1189750