A direct proof of the Hofmann-Mislove theorem
Authors:
Klaus Keimel and Jan Paseka
Journal:
Proc. Amer. Math. Soc. 120 (1994), 301-303
MSC:
Primary 54D30; Secondary 54D10
DOI:
https://doi.org/10.1090/S0002-9939-1994-1195723-0
MathSciNet review:
1195723
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The Hofmann-Mislove Theorem has attracted increasing interest. Through this note we intend to make it easily accessible by a simple direct proof.
- [1] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin-New York, 1980. MR 614752
- [2] K. H. Hofmann and M. Mislove, Local compactness and continuous lattices, Continuous Lattices (Proceedings, Bremen, 1979) (B. Banaschewski and R.-E. Hoffman, eds.), Springer-Verlag, Berlin, 1981, pp. 209-248.
- [3] Steven Vickers, Topology via logic, Cambridge Tracts in Theoretical Computer Science, vol. 5, Cambridge University Press, Cambridge, 1989. MR 1002193
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D30, 54D10
Retrieve articles in all journals with MSC: 54D30, 54D10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1195723-0
Keywords:
Hofmann-Mislove Theorem,
Scott-open filters
Article copyright:
© Copyright 1994
American Mathematical Society