High-dimensional knots with $\pi _ 1\cong \textbf {Z}$ are determined by their complements in one more dimension than Farber’s range
HTML articles powered by AMS MathViewer
- by William Richter
- Proc. Amer. Math. Soc. 120 (1994), 285-294
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195730-8
- PDF | Request permission
Abstract:
The surgery theory of Browder, Lashof, and Shaneson reduces the study of high-dimensional smooth knots ${\Sigma ^n} \to {S^{n + 2}}$ with ${\pi _1} \cong \mathbb {Z}$ to homotopy theory. We apply Williams’s Poincaré embedding theorem to a highly connected Seifert surface. Then such knots are determined by their complements if the $\mathbb {Z}$-cover of the complement is $[(n + 2)/3]$-connected; we improve Farber’s work by one dimension.References
- M. G. Barratt and W. Richter, Simple knots and the third equivariant Hopf invariant, preprint.
- J. M. Boardman and B. Steer, On Hopf invariants, Comment. Math. Helv. 42 (1967), 180–221. MR 221503, DOI 10.1007/BF02564417
- William Browder, Diffeomorphisms of $1$-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155–163. MR 212816, DOI 10.1090/S0002-9947-1967-0212816-0 —, Embedding $1$-connected manifolds, Bull. Amer. Math. Soc. 72 (1966), 225-231.
- William Browder, Embedding smooth manifolds, Proc. Internat. Congr. Math. (Moscow, 1966) Izdat. “Mir”, Moscow, 1968, pp. 712–719. MR 0238335
- William Browder, Poincaré spaces, their normal fibrations and surgery, Invent. Math. 17 (1972), 191–202. MR 326743, DOI 10.1007/BF01425447
- Sylvain E. Cappell and Julius L. Shaneson, There exist inequivalent knots with the same complement, Ann. of Math. (2) 103 (1976), no. 2, 349–353. MR 413117, DOI 10.2307/1970942
- M. Š. Farber, An algebraic classification of some even-dimensional spherical knots. I, II, Trans. Amer. Math. Soc. 281 (1984), no. 2, 507–527, 529–570. MR 722762, DOI 10.1090/S0002-9947-1984-99927-2
- M. Š. Farber, Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261 (1980), no. 1, 185–209. MR 576871, DOI 10.1090/S0002-9947-1980-0576871-7
- C. McA. Gordon, Knots in the $4$-sphere, Comment. Math. Helv. 51 (1976), no. 4, 585–596. MR 440561, DOI 10.1007/BF02568175
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- M. Kervaire and C. Weber, A survey of multidimensional knots, Knot theory (Proc. Sem., Plans-sur-Bex, 1977) Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 61–134. MR 521731
- C. Kearton, An algebraic classification of some even-dimensional knots, Topology 15 (1976), no. 4, 363–373. MR 442948, DOI 10.1016/0040-9383(76)90030-6
- C. Kearton, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), 141–160. MR 358796, DOI 10.1090/S0002-9947-1975-0358796-3
- Sadayoshi Kojima, Classification of simple knots by Levine pairings, Comment. Math. Helv. 54 (1979), no. 3, 356–367. MR 543336, DOI 10.1007/BF02566280
- Richard K. Lashof and Julius L. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171–175. MR 242175, DOI 10.1090/S0002-9904-1969-12197-X
- J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185–198. MR 266226, DOI 10.1007/BF02567325
- Jerome Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1–50. MR 461518, DOI 10.1090/S0002-9947-1977-0461518-0
- J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9–16. MR 179803, DOI 10.1016/0040-9383(65)90045-5
- Frank Quinn, Surgery on Poincaré and normal spaces, Bull. Amer. Math. Soc. 78 (1972), 262–267. MR 296955, DOI 10.1090/S0002-9904-1972-12950-1
- Andrew Ranicki, Exact sequences in the algebraic theory of surgery, Mathematical Notes, vol. 26, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 620795
- William Richter, A homotopy-theoretic proof of Williams’s metastable Poincaré embedding theorem, Duke Math. J. 88 (1997), no. 3, 435–447. MR 1455528, DOI 10.1215/S0012-7094-97-08818-9
- Alexander I. Suciu, Inequivalent frame-spun knots with the same complement, Comment. Math. Helv. 67 (1992), no. 1, 47–63. MR 1144613, DOI 10.1007/BF02566488
- C. T. C. Wall, Poincaré complexes. I, Ann. of Math. (2) 86 (1967), 213–245. MR 217791, DOI 10.2307/1970688
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- C. T. C. Wall, Classification problems in differential topology. IV. Thickenings, Topology 5 (1966), 73–94. MR 192509, DOI 10.1016/0040-9383(66)90005-X
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
- Bruce Williams, Applications of unstable normal invariants. I, Compositio Math. 38 (1979), no. 1, 55–66. MR 523263
- Bruce Williams, Hopf invariants, localization and embeddings of Poincaré complexes, Pacific J. Math. 84 (1979), no. 1, 217–224. MR 559639, DOI 10.2140/pjm.1979.84.217
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 285-294
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195730-8
- MathSciNet review: 1195730