Automorphisms of
Author:
Thomas Sperlich
Journal:
Proc. Amer. Math. Soc. 120 (1994), 5-11
MSC:
Primary 20F55; Secondary 13A50
DOI:
https://doi.org/10.1090/S0002-9939-1994-1200179-5
MathSciNet review:
1200179
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper gives a proof of the theorem that for Coxeter groups the algebra of coinvariants is isomorphic to the normalizer of the Coxeter group in the linear group of a vector space over . I have tried to give a relatively elementary proof which requires only elementary algebra and a little knowledge of the theory of invariants.
- [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- [2] Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, https://doi.org/10.2307/2372597
- [3] L. Flatto, Topological vector spaces, Enseign. Math. 24 (1978).
- [4] C. T. Benson and L. C. Grove, Finite reflection groups, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0383218
- [5] Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
- [6] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
- [7] Ştefan Papadima, Rigidity properties of compact Lie groups modulo maximal tori, Math. Ann. 275 (1986), no. 4, 637–652. MR 859335, https://doi.org/10.1007/BF01459142
- [8] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
- [9] -, Algèbres de Lie semi-simples et complexes, Benjamin, New York, 1966.
- [10] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, https://doi.org/10.4153/cjm-1954-028-3
- [11] Larry Smith, A note on the realization of graded complete intersection algebras by the cohomology of a space, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 131, 379–384. MR 668184, https://doi.org/10.1093/qmath/33.3.379
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F55, 13A50
Retrieve articles in all journals with MSC: 20F55, 13A50
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1200179-5
Article copyright:
© Copyright 1994
American Mathematical Society