Noncommutative decomposition theorems in Riesz spaces
Authors:
Paolo De Lucia and Pedro Morales
Journal:
Proc. Amer. Math. Soc. 120 (1994), 193-202
MSC:
Primary 28B05; Secondary 03C15, 06A06, 46L50
DOI:
https://doi.org/10.1090/S0002-9939-1994-1203982-0
MathSciNet review:
1203982
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that an additive function defined on an orthomodular poset and taking its values in the positive cone of a normed Riesz space admits a Lebesgue Decomposition and a Yosida-Hewitt Decomposition.
- [1] Johan F. Aarnes, Quasi-states on 𝐶*-algebras, Trans. Amer. Math. Soc. 149 (1970), 601–625. MR 282602, https://doi.org/10.1090/S0002-9947-1970-0282602-4
- [2] Ladislav Beran, Orthomodular lattices, Academia [Publishing House of the Czech Academy of Sciences], Prague, 1984. Algebraic approach. MR 785005
- [3] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of charges, Pure and Applied Mathematics, vol. 109, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. A study of finitely additive measures; With a foreword by D. M. Stone. MR 751777
- [4] N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971. MR 0358652
- [5] W. J. Claas and A. C. Zaanen, Orlicz lattices, Comment. Math. Special Issue 1 (1978), 77–93. Special issue dedicated to Władysław Orlicz on the occasion of his seventy-fifth birthday. MR 504154
- [6] Richard B. Darst, A decomposition of finitely additive set functions, J. Reine Angew. Math. 210 (1962), 31–37. MR 137808, https://doi.org/10.1515/crll.1962.210.31
- [7] J. Dixmier, Les algèbres d' opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1969.
- [8] N. Dunford and J. Schwartz, Linear operators. I, Interscience, New York, 1958.
- [9] D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge University Press, London-New York, 1974. MR 0454575
- [10] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. MR 1653399
- [11] Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496
- [12] Pavel Pták and Sylvia Pulmannová, Kvantové logiky, VEDA, Vydavatel’stvo Slovenskej Akadémie Vied, Bratislava, 1989 (Slovak, with English and Russian summaries). MR 1176313
- [13] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. MR 0151555
- [14] Gottfried T. Rüttimann, Decomposition of cones of measures, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), no. 2, 267–279. MR 1076452
- [15] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
- [16] Klaus D. Schmidt, Decompositions of vector measures in Riesz spaces and Banach lattices, Proc. Edinburgh Math. Soc. (2) 29 (1986), no. 1, 23–39. MR 829177, https://doi.org/10.1017/S0013091500017375
- [17] Kôsaku Yosida and Edwin Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46–66. MR 45194, https://doi.org/10.1090/S0002-9947-1952-0045194-X
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28B05, 03C15, 06A06, 46L50
Retrieve articles in all journals with MSC: 28B05, 03C15, 06A06, 46L50
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1203982-0
Keywords:
Orthomodular poset,
normed Riesz space,
Hilbert space,
additive function,
completely additive function
Article copyright:
© Copyright 1994
American Mathematical Society