Jordan $*$-derivations of standard operator algebras
HTML articles powered by AMS MathViewer
- by Peter Šemrl
- Proc. Amer. Math. Soc. 120 (1994), 515-518
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186136-6
- PDF | Request permission
Abstract:
Let $H$ be a real or complex Hilbert space, $\dim H > 1$, and $\mathcal {B}(H)$ the algebra of all bounded linear operators on $H$. Assume that $\mathcal {A}$ is a standard operator algebra on $H$. Then every additive Jordan ${\ast }$-derivation $J:\mathcal {A} \to \mathcal {B}(H)$ is of the form $J(A) = AT - T{A^{\ast }}$ for some $T \in \mathcal {B}(H)$.References
- Matej Brešar and Borut Zalar, On the structure of Jordan ${}^*$-derivations, Colloq. Math. 63 (1992), no. 2, 163–171. MR 1180629, DOI 10.4064/cm-63-2-163-171
- Paul R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275–289. MR 0350442, DOI 10.1016/0022-1236(73)90080-3
- I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. MR 95864, DOI 10.1090/S0002-9939-1957-0095864-2
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- Peter emrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), no. 1, 27–28. MR 926973, DOI 10.1017/S0004972700004111
- Peter emrl, On Jordan $*$-derivations and an application, Colloq. Math. 59 (1990), no. 2, 241–251. MR 1090656, DOI 10.4064/cm-59-2-241-251
- Peter emrl, Quadratic functionals and Jordan $*$-derivations, Studia Math. 97 (1991), no. 3, 157–165. MR 1100685, DOI 10.4064/sm-97-3-157-165
- Peter emrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991), no. 2, 234–240. MR 1091440
- Peter emrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1105–1113. MR 1158008, DOI 10.1090/S0002-9939-1993-1158008-3
- J. Vukman, A result concerning additive functions in Hermitian Banach $^{\ast }$-algebras and an application, Proc. Amer. Math. Soc. 91 (1984), no. 3, 367–372. MR 744631, DOI 10.1090/S0002-9939-1984-0744631-9
- J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), no. 1, 133–136. MR 883415, DOI 10.1090/S0002-9939-1987-0883415-0
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 120 (1994), 515-518
- MSC: Primary 46L57; Secondary 46L70, 47B48, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1186136-6
- MathSciNet review: 1186136