THE SET OF ALL $m \times n$ RECTANGULAR REAL MATRICES
OF RANK r IS CONNECTED BY ANALYTIC REGULAR ARCS

J.-Cl. EVARD AND F. JAFARI

(Communicated by Palle E. T. Jorgensen)

Abstract. It is well known that the set of all square invertible real matrices
has two connected components. The set of all $m \times n$ rectangular real matrices
of rank r has only one connected component when $m \neq n$ or $r < m = n$. We
show that all these connected components are connected by analytic regular arcs.
We apply this result to establish the existence of p-times differentiable bases of
the kernel and the image of a rectangular real matrix function of several real
variables.

Introduction

In [3] we showed that every open connected subset of a topological vector
space is connected by regular polynomial curves. In this paper, we deal with
the set of real $m \times n$ matrices of rank r. In spite of the fact that this set is not
an open subset of $\mathbb{R}^{m \times n}$, we show that it is connected by regular arcs that are
not only of class C^∞ but are also analytic. A similar result was established in
[2, Theorem 7.2] for complex matrices, but some new methods are necessary to
obtain arcs that are contained in the set of real matrices. We furnish a method
to construct these arcs explicitly.

The analytic connections are likely to have many applications. For example, a
method to construct continuous arcs in the set of square invertible real matrices
is furnished in [1, Proposition 1.5]. This construction was used to establish
the uniqueness of the topological degree. In this paper, we provide another
application by showing that the main result of [2] about the existence of bases of
class C^p of the kernel and the image of a rectangular matrix function of
several real variables is also valid when the field is \mathbb{R} instead of \mathbb{C}.

We will denote by $\mathbb{R}^{m \times n}$ the set of all $m \times n$ real matrices and by $\mathbb{R}^{r \times n}
the subset of $\mathbb{R}^{m \times n}$ of all matrices of rank r. We will denote by I_n the $n \times n$
identity matrix and by $I_r^{m \times n}$ the following $m \times n$ matrix of rank r:

$$
I_r^{m \times n} = \begin{bmatrix}
I_r & 0 \\
0 & 0
\end{bmatrix}.
$$

In Lemma 1 we show that the two connected components of $\mathbb{R}^{n \times n}$ are con-
nected by analytic arcs that may be chosen as closed curves travelled infinitely

Received by the editors May 29, 1992.
1991 Mathematics Subject Classification. Primary 15A54, 54D05.

© 1994 American Mathematical Society
0002-9939/94 $1.00 + .25$ per page

413
many times. In Lemma 2 we establish the existence of equivalences with positive determinants between matrices of same rank. In Lemma 3 we show that \(\mathbb{R}^{m \times n} \) is connected by analytic arcs that may be chosen as closed curves travelled infinitely many times, when \(m \neq n \) or \(r < m = n \). In Theorem 4 we show that all the connected components of \(\mathbb{R}^{n \times n} \) and \(\mathbb{R}^{m \times n} \) are connected by analytic arcs that are regular. The problem of finding analytic regular closed curves travelled infinitely many times is still open. In Theorem 5 we apply Theorem 4 to establish the existence of bases of class \(C^p \) of the kernel and the image of a rectangular real matrix function of several real variables.

Results

Lemma 1. Let \(A, B \in \mathbb{R}^{n \times n} \) be such that \(\det A \) and \(\det B \) have the same sign. Then there exists an analytic mapping \(F: \mathbb{R} \to \mathbb{R}^{n \times n} \) such that, for every \(m \in \mathbb{Z} \), \(F(m) = A \) if \(m \) is even and \(F(m) = B \) if \(m \) is odd. Moreover, \(\det F(t) \) has the same sign as \(\det A \), and \(F(t + 2) = F(t) \) for every \(t \in \mathbb{R} \).

Proof. Let \(C = BA^{-1} \in \mathbb{R}^{n \times n} \). Since \(\det A \) and \(\det B \) have the same sign, we have \(\det C > 0 \). It is well known that \(C \) is similar in \(\mathbb{R}^{n \times n} \) to a real Jordan matrix. More precisely, there exist \(R \in \mathbb{R}^{n \times n} \) and \(J \in \mathbb{R}^{n \times n} \) such that

\[
C = RJR^{-1},
\]

where in turn \(J_1 \) has the form

\[
J_1 = \begin{bmatrix}
C(\rho_1, \theta_1) & \alpha_1 I_2 & 0 \\
& \ddots & \ddots \\
& & \alpha_{p-1} I_2 & C(\rho_p, \theta_p)
\end{bmatrix},
\]

\(\rho_1, \ldots, \rho_p > 0, \theta_1, \ldots, \theta_p \in [0, 2\pi[; \alpha_1, \ldots, \alpha_{p-1} \in \{0, 1\}, \)

\[
C(\rho, \theta) = \rho \begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix} \forall \rho > 0, \theta \in [0, 2\pi[;
\]

\(J_2 \) has the form

\[
J_2 = \begin{bmatrix}
\mu_1 & \beta_1 & 0 \\
& \ddots & \beta_{q-1} \\
0 & & \mu_q
\end{bmatrix},
\]

\(\mu_1, \ldots, \mu_q > 0, \beta_1, \ldots, \beta_{q-1} \in \{0, 1\} \); and \(J_3 \) has the form

\[
J_3 = \begin{bmatrix}
v_1 & \gamma_1 & 0 \\
& \ddots & \gamma_{r-1} \\
0 & & v_r
\end{bmatrix},
\]

\(v_1, \ldots, v_r < 0, \gamma_1, \ldots, \gamma_{r-1} \in \{0, 1\}, \) and \(r \) is even because \(\det C > 0 \). Let

\[
\lambda(t) = \cos^2(\pi t/2), \quad \mu(t) = \sin^2(\pi t/2) \quad \forall t \in \mathbb{R}.
\]
Let \(t \in \mathbb{R} \). For every \(k \in \{1, 2, \ldots\} \) that makes sense, let
\[
\begin{align*}
 r_k(t) &= \lambda(t) + \mu(t) \rho_k, \\
 s_k(t) &= \mu(t) \theta_k, \\
 a_k(t) &= \mu(t) \alpha_k, \\
 C_k(t) &= C(r_k(t), s_k(t)), \\
 m_k(t) &= \lambda(t) + \mu(t) \mu_k, \\
 b_k(t) &= \mu(t) \beta_k, \\
 n_k(t) &= -\lambda(t) + \mu(t) \nu_k, \\
 c_k(t) &= \mu(t) \gamma_k.
\end{align*}
\]
Let
\[
H_1(t) = \begin{bmatrix}
 C_1(t) & a_1(t) I_2 & \cdots & 0 \\
 \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & a_{p-1}(t) I_2 & C_p(t) \\
\end{bmatrix},
\]
\[
H_2(t) = \begin{bmatrix}
 m_1(t) & b_1(t) & \cdots & 0 \\
 \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & b_{q-1}(t) & m_q(t) \\
\end{bmatrix},
\]
\[
R(t) = \begin{bmatrix}
 \cos(\pi t) & \sin(\pi t) \\
 -\sin(\pi t) & \cos(\pi t) \\
\end{bmatrix},
\]
\[
H_3(t) = \begin{bmatrix}
 n_1(t) & c_1(t) & \cdots & 0 \\
 \vdots & \ddots & \vdots & \vdots \\
 0 & \cdots & c_{r-1}(t) & n_r(t) \\
\end{bmatrix} \begin{bmatrix}
 -R(t) & 0 \\
 \vdots & \vdots \\
 0 & -R(t) \\
\end{bmatrix},
\]
where the last matrix has \(\frac{r}{2} \) blocks \(R(t) \), which is possible since \(r \) is even.

\[
H(t) = \text{diag}[H_1(t), H_2(t), H_3(t)],
\]
\[
G(t) = RH(t)R^{-1}, \quad F(t) = G(t)A.
\]
Let \(m \in \mathbb{Z} \). Plainly, if \(m \) is even, then
\[
H_1(m) = I_{2p}, \quad H_2(m) = I_q, \quad H_3(m) = (-I_r)(-I_r) = I_r,
\]
\[
H(m) = I_n, \quad G(m) = RR^{-1} = I_n, \quad F(m) = I_n A = A,
\]
and, if \(m \) is odd, then
\[
H_1(m) = J_1, \quad H_2(m) = J_2, \quad H_3(m) = J_3,
\]
\[
H(m) = J, \quad G(m) = RJR^{-1} = C, \quad F(m) = CA = B.
\]
It is obvious that all the functions above are periodic with period 2. Let \(t \in \mathbb{R} \).

It is easy to see that
\[
\begin{align*}
 \det H_1(t) &= \det C_1(t) \cdots \det C_p(t) = (r_1(t))^2 \cdots (r_p(t))^2 > 0, \\
 \det H_2(t) &= m_1(t) \cdots m_q(t) > 0, \\
 \det H_3(t) &= n_1(t) \cdots n_r(t) (\det R(t))^{r/2} = (-1)^r |n_1(t)| \cdots |n_r(t)| > 0,
\end{align*}
\]
because \(r \) is even, and, finally,
\[
\det H(t) = (\det H_1(t))(\det H_2(t))(\det H_3(t)) > 0, \\
\det(G(t)) = \det H(t) > 0, \\
\det F(t) = (\det G(t))(\det A) \neq 0.
\]
Thus \(F(t) \in \mathbb{R}_n^{n \times n} \), and \(\det F(t) \) has the same sign as \(\det A \).

Lemma 2. Let \(m, n \in \{1, 2, \ldots\} \) and \(r \in \{0, 1, 2, \ldots\} \) be such that \(m \neq n \) or \(r < m = n \). Let \(A \in \mathbb{R}_r^{m \times n} \). Then there exist \(L \in \mathbb{R}_r^{m \times m} \) and \(R \in \mathbb{R}_n^{n \times n} \) such that \(\det L > 0, \ \det R > 0, \) and \(A = LI^m_{m \times n}R \).

Proof. If \(r = 0 \), then \(A = 0 = I^m_{n \times n} \), and we can choose \(L = I_m \) and \(R = I_n \). Suppose \(r \geq 1 \). It follows from the hypothesis that \(r < m \) or \(r < n \).

(a) Suppose \(r < m \). Then \(m \geq 2 \). As \(A \) is of rank \(r \), it is well known that \(A \) is equivalent in \(\mathbb{R}_r^{m \times n} \) to \(I^m_{m \times n} \). That is, there exist \(B \in \mathbb{R}_r^{m \times m} \) and \(C \in \mathbb{R}_n^{n \times n} \) such that \(A = BI^m_{m \times n}C \). If \(\det B > 0 \) and \(\det C > 0 \), we obviously choose \(L = B \) and \(R = C \). If \(\det B > 0 \) and \(\det C < 0 \), we choose

\[
L = B \text{diag}[-1, I_{m-2}, -1] \quad \text{and} \quad R = \text{diag}[-1, I_{n-1}]C,
\]
considering that \(r = n \) is possible. If \(\det B < 0 \) and \(\det C > 0 \), we choose

\[
L = B \text{diag}[I_{m-1}, -1] \quad \text{and} \quad R = C.
\]
If \(\det B < 0 \) and \(\det C < 0 \), we choose

\[
L = B \text{diag}[-1, I_{m-1}] \quad \text{and} \quad R = \text{diag}[-1, I_{n-1}]C.
\]
It is easy to check that, in all cases, \(A = LI^m_{m \times n}R, \ \det L > 0, \) and \(\det R > 0 \).

(b) Suppose \(r < n \). Then by (a), there exist \(B \in \mathbb{R}_r^{n \times n} \) and \(C \in \mathbb{R}_r^{m \times m} \) such that \(A^T = BI^m_{m \times m}C \), \(\det B > 0 \), and \(\det C > 0 \). Let \(L = C^T \) and \(R = B^T \). Then

\[
A = C^T I^m_{m \times n}B^T = LI^m_{r \times n}R,
\]
\[
\det L = \det C^T = \det C > 0, \quad \det R = \det B^T = \det B > 0. \quad \square
\]

Lemma 3. Let \(m, n \in \{1, 2, \ldots\} \) and \(r \in \{0, 1, 2, \ldots\} \) be such that \(m \neq n \) or \(r < m = n \). Let \(A, B \in \mathbb{R}_r^{m \times n} \). Then there exists an analytic mapping \(F: \mathbb{R} \rightarrow \mathbb{R}_r^{m \times n} \) such that, for every \(k \in \mathbb{Z} \), \(F(k) = A \) if \(k \) is even and \(F(k) = B \) if \(k \) is odd. Moreover, \(F(t + 2) = F(t) \) for every \(t \in \mathbb{R} \).

Proof. By Lemma 2 there exist \(A_1, B_1 \in \mathbb{R}_r^{m \times m} \) and \(A_2, B_2 \in \mathbb{R}_n^{n \times n} \) such that

\[
A = A_1 I^m_{m \times n} A_2, \quad B = B_1 I^m_{m \times n} B_2,
\]
\[
\det A_1 > 0, \quad \det A_2 > 0, \quad \det B_1 > 0, \quad \det B_2 > 0.
\]
By Lemma 1 there exist analytic mappings \(F_1: \mathbb{R} \rightarrow \mathbb{R}_r^{m \times m} \) and \(F_2: \mathbb{R} \rightarrow \mathbb{R}_n^{n \times n} \) such that, for every \(k \in \mathbb{Z} \), \(F_1(k) = A_1, \ F_2(k) = A_2 \) if \(k \) is even and \(F_1(k) = B_1, \ F_2(k) = B_2 \) if \(k \) is odd. Let

\[
F(t) = F_1(t) I^m_{m \times n} F_2(t) \quad \forall t \in \mathbb{R}.
\]
Then \(F: \mathbb{R} \rightarrow \mathbb{R}_r^{m \times n} \) is analytic, and, for every \(k \in \mathbb{Z} \), \(F(k) = A_1 I^m_{m \times n} A_2 = A \) if \(k \) is even and \(F(k) = B_1 I^m_{m \times n} B_2 = B \) if \(k \) is odd. \(\square \)

Theorem 4. The subset \(\mathbb{R}_r^{n \times n} \) of \(\mathbb{R}^{n \times n} \) has two connected components, whereas the subset \(\mathbb{R}_r^{m \times n} \) of \(\mathbb{R}^{m \times n} \) has only one connected component when \(m \neq n \) or
r < m = n. When r > 0, all these connected components are connected by analytic regular arcs. More precisely: Suppose r > 0. Let A, B ∈ ℜ_{m \times n}^r be such that A ≠ B, and, if r = m = n, then det A and det B have the same sign. Then there exists an analytic mapping \(F: \mathbb{R} \to \mathbb{R}_{m \times n}^r \) such that \(F(0) = A, \ F(1) = B, \) and \(F'(t) \neq 0 \) for every \(t \in [0, 1] \).

Proof. By Lemma 1 (if \(r = m = n \)) and Lemma 3 (if \(m \neq n \) or \(r < m = n \)), there exists an analytic mapping \(G: \mathbb{R} \to \mathbb{R}_{m \times n}^r \) such that \(G(0) = A \) and \(G(1) = B \).

Let

\[
\chi = \{ t \in [0, 1] \mid \exists \lambda(t) \in \mathbb{R}, \ G'(t) = \lambda(t)G(t) \}.
\]

Case 1: Suppose \(\chi \) is infinite. Then there exist \(t_1, t_2, \ldots \in \chi \) and \(t_0 \in [0, 1] \) such that \(t_0 = \lim_{k \to \infty} t_k \). For every \(t \in \mathbb{R}, \ i \in \{1, \ldots, m\}, \ j \in \{1, \ldots, n\}, \) let \(g_{ij}(t) \) denote the entry of the \(i \)-th row, \(j \)-th column of \(G(t) \). Since \(r > 0 \), there exist \(i_0 \in \{1, \ldots, m\} \) and \(j_0 \in \{1, \ldots, n\} \) such that \(g_{i_0j_0}(t_0) \neq 0 \). As \(g_{i_0j_0} \) is continuous, there exists a neighborhood \(N_{t_0} \subseteq \mathbb{R} \) of \(t_0 \) such that \(g_{i_0j_0}(t) \neq 0 \) for every \(t \in N_{t_0} \). Because \(\lim_{k \to \infty} t_k = t_0 \), there exists \(k_0 \in \mathbb{N} \) such that \(t_k \in N_{t_0} \) for every \(k \in \{k_0, k_0+1, \ldots\} \). Let \(k \in \{k_0, k_0+1, \ldots\} \). Since \(t_k \in \chi \), we have \(G'(t_k) = \lambda(t_k)G(t_k) \), which implies \(g'_{i_0j_0}(t_k) = \lambda(t_k)g_{i_0j_0}(t_k) \) and, hence, \(g_{i_0j_0}(t_k)G'(t_k) = g'_{i_0j_0}(t_k)G(t_k) \). As \(\lim_{k \to \infty} t_k = t_0 \), it follows by the Analytic Continuation Theorem that \(g_{i_0j_0}(t)G'(t) = g'_{i_0j_0}(t)G(t) \) for every \(t \in \mathbb{R} \). Let \(g = g_{i_0j_0} \). The equality \(gG' - g'G = 0 \) implies that \((G(t)/g(t))' = 0 \) for every \(t \in \mathbb{R} \). Therefore, there exists a constant matrix \(M_0 \in \mathbb{R}_{m \times n}^r \) such that \(G(t) = g(t)M_0 \) for every \(t \in N_{t_0} \) and hence for every \(t \in \mathbb{R} \) by analytic continuation. Because \(\text{rank} \, G = r > 0 \), the equality \(G = gM_0 \) implies that \(g(t) \neq 0 \) for every \(t \in \mathbb{R} \) and \(M_0 \neq 0 \). Furthermore, \(A = G(0) = g(0)M_0 \) and \(B = G(1) = g(1)M_0 \). Let

\[
F(t) = \left\{ t(g(1) - g(0)) + g(0) \right\}M_0 \quad \forall t \in \mathbb{R}.
\]

Then

\[
F(0) = g(0)M_0 = A, \quad F(1) = g(1)M_0 = B,
\]

and

\[
F'(t) = (g(1) - g(0))M_0 \neq 0,
\]

for every \(t \in \mathbb{R} \), because \(A \neq B \) implies that \(g(0) \neq g(1) \).

Case 2: Suppose that \(\chi \) is finite. Then there exist \(t_0, \ldots, t_q \in [0, 1] \) such that \(0 = t_0 < t_1 < \cdots < t_q = 1 \) and

(1) \(\chi \subseteq \{ t_0, \ldots, t_q \} \).

By Hermite interpolation, there exists a polynomial \(p \in \mathbb{R}[X] \) such that, for every \(k \in \{0, \ldots, q\} \),

(2) \(p(t_k) = \frac{1}{2} \),

(3) \(t_k \in \chi \) and \(\lambda(t_k) \neq 0 \Rightarrow p'(t_k) = \lambda(t_k) \),

(4) \(t_k \in \chi \) and \(\lambda(t_k) = 0 \Rightarrow p'(t_k) = 1 \).

For every \(t \in \mathbb{R} \), let

\[
q(t) = p(t)^2 + \frac{3}{4}, \quad F(t) = q(t)G(t).
\]
Then, by (2), \(F(0) = G(0) = A \) and \(F(1) = G(1) = B \). Moreover, for every \(t \in \mathbb{R} \), we have \(\text{rank} \ F(t) = \text{rank} \ G(t) = r \), because \(q(t) \neq 0 \). Let \(t \in [0, 1] \). Let us show that \(F'(t) \neq 0 \). Suppose \(F'(t) = 0 \). Then

\[
0 = F'(t) = q'(t)G(t) + q(t)G'(t).
\]

Consequently,

\[
G'(t) = -\frac{q'(t)}{q(t)}G(t),
\]

which implies that \(t \in \chi \). It follows by (1), (2), (3), (4) that

\[
q(t) = p(t)^2 + \frac{3}{2} = 1,
\]

\[
q'(t) = 2p(t)p'(t) = p'(t) = \begin{cases} \lambda(t) & \text{if } \lambda(t) \neq 0, \\ 1 & \text{if } \lambda(t) = 0. \end{cases}
\]

On the other hand, since \(t \in \chi \), we have

\[
G'(t) = \lambda(t)G(t),
\]

and, hence, by (5),

\[
0 = (q'(t) + q(t)\lambda(t))G(t).
\]

Since \(r > 0 \), we have \(G(t) \neq 0 \), and it follows that

\[
q'(t) + q(t)\lambda(t) = 0.
\]

Consequently, by (6) and (7),

\[
0 = \lambda(t) + \lambda(t) = 2\lambda(t) \quad \text{if } \lambda(t) \neq 0
\]

and

\[
0 = 1 + 1 \cdot 0 = 1 \quad \text{if } \lambda(t) = 0.
\]

Both cases are impossible. Therefore, \(F'(t) \neq 0 \) for every \(t \in [0, 1] \). □

Theorem 5 (Existence of orthonormal bases of class \(C^p \) of the kernel and the image of a rectangular matrix function of \(q \) real variables). Let \(\Omega \subseteq \mathbb{R}^q \) be \(C^p \)-diffeomorphic to \(\mathbb{R}^q \). Let \(A \in C^p(\Omega, \mathbb{R}^{m \times n}) \). Then there exist

\[
u_1, \ldots, u_m \in C^p(\Omega, \mathbb{R}^m), \quad v_1, \ldots, v_n \in C^p(\Omega, \mathbb{R}^n)
\]

such that, for every \(t \in \Omega \),

(a) if \(r > 0 \), then \((u_1(t), \ldots, u_r(t)) \) is an orthonormal basis of \(\text{Im} \ A(t) \);

(b) if \(r < m \), then \((u_{r+1}(t), \ldots, u_m(t)) \) is an orthonormal basis of \((\text{Im} \ A(t))^\perp \);

(c) if \(r > 0 \), then \((v_1(t), \ldots, v_r(t)) \) is an orthonormal basis of \((\text{Ker} \ A(t))^\perp \);

(d) if \(r < n \), then \((v_{r+1}(t), \ldots, v_n(t)) \) is an orthonormal basis of \(\text{Ker} \ A(t) \).

Proof. The proof is the same as the proof of Theorem 8.2 of [2] except for the following modifications:

(a) Replace \(\mathbb{C} \) by \(\mathbb{R} \) in the proof of Theorem 8.2 of [2].

(b) In the proof of Lemma 8.1 of [2], apply Theorem 4 of this paper instead of Theorem 7.2 of [2].

(c) In the proof of Lemma 8.1 of [2], if \(\det X(t) < 0 \), then multiply the first column of \(A(t) \) and \(X(t) \) by \(-1\). □
THE SET OF ALL $m \times n$ RECTANGULAR REAL MATRICES OF RANK r

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WYOMING, LARAMIE, WYOMING 82071–3036

E-mail address, J.-Cl. Evard: matdifeq@corral.uwyo.edu
E-mail address, F. Jafari: fjafari@corral.uwyo.edu