Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A suspension theorem for continuous trace $C^ *$-algebras
HTML articles powered by AMS MathViewer

by Marius Dădărlat
Proc. Amer. Math. Soc. 120 (1994), 761-769
DOI: https://doi.org/10.1090/S0002-9939-1994-1166354-3

Abstract:

Let $\mathcal {B}$ be a stable continuous trace ${C^{\ast }}$-algebra with spectrum $Y$. We prove that the natural suspension map ${S_{\ast }}:[{C_0}(X),\mathcal {B}] \to [{C_0}(X) \otimes {C_0}({\mathbf {R}}),\mathcal {B} \otimes {C_0}({\mathbf {R}})]$ is a bijection, provided that both $X$ and $Y$ are locally compact connected spaces whose one-point compactifications have the homotopy type of a finite CW-complex and $X$ is noncompact. This is used to compute the second homotopy group of $\mathcal {B}$ in terms of $K$-theory. That is, $[{C_0}({{\mathbf {R}}^2}),\mathcal {B}] = {K_0}({\mathcal {B}_0})$, where ${\mathcal {B}_0}$ is a maximal ideal of $\mathcal {B}$ if $Y$ is compact, and ${\mathcal {B}_0} = \mathcal {B}$ if $Y$ is noncompact.
References
  • Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
  • M. Dădărlat and A. Némethi, Shape theory and (connective) $K$-theory, J. Operator Theory 23 (1990), no. 2, 207–291. MR 1066807
  • Edward G. Effros, On the structure theory of $C^{\ast }$-algebras: some old and new problems, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 19–34. MR 679693
  • Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247, DOI 10.1007/978-1-4757-4008-0
  • Jonathan Rosenberg, The role of $K$-theory in noncommutative algebraic topology, Operator algebras and $K$-theory (San Francisco, Calif., 1981) Contemp. Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1982, pp. 155–182. MR 658514
  • Claude Schochet, Topological methods for $C^{\ast }$-algebras. III. Axiomatic homology, Pacific J. Math. 114 (1984), no. 2, 399–445. MR 757510, DOI 10.2140/pjm.1984.114.399
  • Graeme Segal, $K$-homology theory and algebraic $K$-theory, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin, 1977, pp. 113–127. MR 0515311
  • Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Similar Articles
Bibliographic Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 120 (1994), 761-769
  • MSC: Primary 46L85; Secondary 19K99, 46L80, 55P99
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1166354-3
  • MathSciNet review: 1166354