## Solvability of systems of linear operator equations

HTML articles powered by AMS MathViewer

- by Rong Qing Jia, Sherman Riemenschneider and Zuowei Shen
- Proc. Amer. Math. Soc.
**120**(1994), 815-824 - DOI: https://doi.org/10.1090/S0002-9939-1994-1169033-1
- PDF | Request permission

## Abstract:

Let $G$ be a semigroup of commuting linear operators on a linear space $S$ with the group operation of composition. The solvability of the system of equations ${l_i}f = {\phi _i},\;i = 1, \ldots , r$, where ${l_i} \in G$ and ${\phi _i} \in S$, was considered by Dahmen and Micchelli in their studies of the dimension of the kernel space of certain linear operators. The compatibility conditions ${l_j}{\phi _i} = {l_i}{\phi _j},i \ne j$, are necessary for the system to have a solution in $S$. However, in general, they do not provide sufficient conditions. We discuss what kinds of conditions on operators will make the compatibility sufficient for such systems to be solvable in $S$.## References

- Wolfgang Dahmen and Charles A. Micchelli,
*On multivariate $E$-splines*, Adv. Math.**76**(1989), no. 1, 33–93. MR**1004486**, DOI 10.1016/0001-8708(89)90043-1 - Wolfgang Dahmen and Charles A. Micchelli,
*Local dimension of piecewise polynomial spaces, syzygies, and solutions of systems of partial differential equations*, Math. Nachr.**148**(1990), 117–136. MR**1127336**, DOI 10.1002/mana.3211480107 - Leon Ehrenpreis,
*Fourier analysis in several complex variables*, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1970. MR**0285849** - Rong Qing Jia, Sherman Riemenschneider, and Zuowei Shen,
*Dimension of kernels of linear operators*, Amer. J. Math.**114**(1992), no. 1, 157–184. MR**1147721**, DOI 10.2307/2374741 - Serge Lang,
*Introduction to algebraic geometry*, Interscience Publishers, Inc., New York-London, 1958. MR**0100591** - S. D. Riemenschneider, R.-Q. Jia, and Z. Shen,
*Multivariate splines and dimensions of kernels of linear operators*, Multivariate approximation and interpolation (Duisburg, 1989) Internat. Ser. Numer. Math., vol. 94, Birkhäuser, Basel, 1990, pp. 261–274. MR**1111942**, DOI 10.1007/978-3-0348-5685-0_{2}0 - I. R. Shafarevich,
*Basic algebraic geometry*, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR**0366917** - Zuowei Shen,
*Dimension of certain kernel spaces of linear operators*, Proc. Amer. Math. Soc.**112**(1991), no. 2, 381–390. MR**1065091**, DOI 10.1090/S0002-9939-1991-1065091-0

## Bibliographic Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**120**(1994), 815-824 - MSC: Primary 47A50; Secondary 39A70
- DOI: https://doi.org/10.1090/S0002-9939-1994-1169033-1
- MathSciNet review: 1169033