Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A characterization of a special ordering in a root system
HTML articles powered by AMS MathViewer

by Paolo Papi
Proc. Amer. Math. Soc. 120 (1994), 661-665
DOI: https://doi.org/10.1090/S0002-9939-1994-1169886-7

Abstract:

We give necessary and sufficient conditions for an ordering of a set of positive roots in a root system $R$ to be associated to a reduced expression of an element of the Weyl group of $R$. Finally we characterize the sets of positive roots which can be given such an ordering.
References
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
  • James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
  • Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215–236 (1964). MR 165016
  • George Lusztig, Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR 1066560, DOI 10.1007/BF00147341
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F55
  • Retrieve articles in all journals with MSC: 20F55
Bibliographic Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 120 (1994), 661-665
  • MSC: Primary 20F55
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1169886-7
  • MathSciNet review: 1169886